# CYLINDERS

# **Pneumatic & Hydraulic**

- · Pneumatic, hydraulic, and electric cylinders are offered in a wide range of styles, sizes, and options.
- Cylinders ranging from the Tom Thumb® pneumatic Cylinders known for durability and versatility, to robust compact cylinders when space requirements are a concern
- · Full featured industry-standard ISO Cylinders designed for long travel lengths and long life







# **SELECTION GUIDE:** Cylinders

The data shown is presented as a quick reference tool for determining which cylinder may fit your requirements. It is recommended to use the PHD online sizing app to easily and confidently determine which cylinder is best suited for your requirements.

| SERIES                      |               | SIZE  | MAX. S | STROKE | MAX. FORCE |             |
|-----------------------------|---------------|-------|--------|--------|------------|-------------|
| JENIES                      |               | SIZL  | in     | mm     | lb         | N           |
| CRS                         |               |       |        |        | @ 150 ps   | si [10 bar] |
| Pneumatic Compact           |               | 12    | 3-1/4  | 80     | 26         | 113         |
| Page 6                      |               | 16    | 3-1/4  | 80     | 47         | 201         |
| - <b>-9-</b> -              | 1 1 1         | 20    | 4      | 100    | 73         | 314         |
|                             |               | 25    | 4      | 100    | 114        | 491         |
|                             |               | 32    | 4-1/2  | 115    | 187        | 804         |
|                             |               | 40    | 4-1/2  | 115    | 292        | 1257        |
|                             |               | 50    | 5      | 125    | 456        | 1964        |
|                             |               | 63    | 7      | 175    | 725        | 3117        |
| CTS                         |               |       |        |        |            | si [10 bar] |
| Guided Pneumatic<br>Compact |               | 12    | 2-1/2  | 60     | 26         | 113         |
|                             |               | 16    | 2-3/4  | 70     | 47         | 201         |
| Page 18                     | 1             | 20    | 3-3/8  | 85     | 73         | 314         |
|                             |               | 25    | 3-3/8  | 85     | 114        | 491         |
|                             | 6             | 32    | 3-5/8  | 90     | 187        | 804         |
|                             | Ch ::         | 40    | 3-7/8  | 95     | 292        | 1257        |
|                             | 19            | 50    | 3-3/4  | 95     | 456        | 1964        |
|                             |               | 63    | 6      | 150    | 725        | 3117        |
| OCQ                         |               |       |        |        |            | si [10 bar] |
| Pneumatic Compact           |               | 12    | _      | 30     | 25         | 111         |
| Page 30                     | FD. 60        | 16    | _      | 30     | 45         | 200         |
|                             | C. Scille     | 20    | _      | 50     | 70         | 311         |
|                             |               | 25    | _      | 50     | 110        | 489         |
|                             |               | 32    | _      | 100    | 180        | 800         |
|                             |               | 40    | _      | 100    | 282        | 1254        |
|                             | Be in         | 50    | _      | 100    | 441        | 1964        |
|                             |               | 63    | _      | 100    | 700        | 3113        |
|                             |               | 80    | _      | 100    | 1129       | 5022        |
|                             |               | 100   | _      | 100    | 1765       | 7851        |
| CV                          |               |       |        |        |            | si [10 bar] |
| Pneumatic ISO/VDMA          |               | CVC20 | 20     | 500    | 73         | 314         |
| Page 36                     | -             | CVC25 | 20     | 500    | 114        | 491         |
|                             |               | CVB20 | 30     | 750    | 73         | 314         |
|                             | 100           | CVB25 | 30     | 750    | 114        | 491         |
|                             |               | 32    | 40     | 1000   | 187        | 804         |
|                             | A A           | 40    | 40     | 1000   | 292        | 1257        |
|                             | 400           | 50    | 40     | 1000   | 457        | 1964        |
|                             |               | 63    | 40     | 1000   | 725        | 3117        |
|                             |               | 80    | 40     | 1000   | 1169       | 5027        |
|                             |               | 100   | 40     | 1000   | 1826       | 7854        |
| OCV                         |               |       |        |        |            | si [10 bar] |
| Pneumatic ISO               | \ <del></del> | 32    | _      | 200    | 187        | 831         |
| Page 62                     | a i           | 40    | _      | 200    | 292        | 1300        |
|                             |               | 50    | _      | 200    | 456        | 2028        |

NOTE: Consult PHD for longer strokes.



# **SELECTION GUIDE:** Cylinders

The data shown is presented as a quick reference tool for determining which cylinder may fit your requirements. It is recommended to use the PHD online sizing app to easily and confidently determine which cylinder is best suited for your requirements.

| SERIES                                     | SIZE                         | MAX. STROKE |     | MAX. FORCE |             |
|--------------------------------------------|------------------------------|-------------|-----|------------|-------------|
| of the o                                   | OILL                         | in          | mm  | lb         | N           |
| OCG                                        |                              |             |     | @ 140 ps   | i [10 bar]  |
| Pneumatic<br>Round Body                    | 20                           | 8           | 200 | 68         | 302         |
|                                            | 25                           | 12          | 300 | 106        | 471         |
| Page 67                                    | 32                           | 12          | 300 | 174        | 774         |
|                                            | 40                           | 12          | 300 | 272        | 1209        |
|                                            | 50                           | 12          | 300 | 426        | 1895        |
|                                            | 63                           | 12          | 300 | 676        | 3006        |
| AV, HV, A                                  |                              |             |     | @ 150 ps   | si [10 bar] |
| Tie Rod Hydraulic & Pneumatic NFPA         | 3/4" A, AV                   | 12          | _   | 66         | 295         |
| 3/4", 1", & 1-1/8"                         | 1" A, AV                     | 18          | _   | 118        | 524         |
|                                            | 1-1/8" A, AV                 | 18          | _   | 149        | 663         |
| tom thumb°                                 | 3/4" HV                      | 12          | _   | 663        | 2948        |
| Page 76                                    | 1" HV                        | 18          | _   | 1178       | 5240        |
|                                            | 1-1/8" HV                    | 18          | _   | 1491       | 6632        |
| AV, A, -0                                  | 2/4" / // //                 | 10          | _   | e e        | 295         |
| Pneumatic Cleanroom tom thumb®             | 3/4" A, AV -0<br>1" A, AV -0 | 12<br>18    | _   | 66<br>118  | 524         |
| Page 90                                    | 1-1/8" A, AV -0              | 18          | _   | 149        | 663         |
|                                            | ,                            |             |     |            |             |
| AV, HV, A                                  |                              |             |     |            |             |
| Tie Rod Hydraulic & Pneumatic NFPA, 1-3/8" | 1-3/8" AV                    | 24          |     | 223        | 991         |
|                                            |                              |             |     |            |             |
| tom thumb° Page 92                         |                              |             |     |            |             |
| Page 92                                    | 4.0/0  1 \/                  | 0.4         |     | 0007       | 0007        |
| Tago of                                    | 1-3/8" HV                    | 24          | _   | 2227       | 9907        |
| TD 🖳                                       | 3/4" TD                      | 6           |     | 125        | 557         |
| Air/Oil Tandem                             | 1" TD                        | 9           | _   | 224        | 997         |
| tom thumb°                                 | 1-1/8" TD                    | 9           | _   | 282        | 1253        |
|                                            | 1-3/8" TD                    | 12          | _   | 416        | 1850        |
| Page 102                                   | 3/4" TD -X or -C             | 6           | _   | 66         | 295         |
|                                            | 1" TD -X or -C               | 9           | _   | 118        | 524         |
|                                            | 1-1/8" TD -X or -C           | 9           | _   | 149        | 663         |
|                                            | 1-3/8" TD -X or -C           | 12          |     | 223        | 991         |

NOTE: Consult PHD for longer strokes.



# **SELECTION GUIDE:** Cylinders

The data shown is presented as a quick reference tool for determining which cylinder may fit your requirements. It is recommended to use the PHD online sizing app to easily and confidently determine which cylinder is best suited for your requirements.

| SERIES                                        | SIZE                                               | MAX. | MAX. STROKE |      | MAX. FORCE<br>@ 150 psi [10 bar] |  |
|-----------------------------------------------|----------------------------------------------------|------|-------------|------|----------------------------------|--|
|                                               |                                                    | in   | mm          | lb   | N                                |  |
| AV2, HV2, A2                                  | 3/4" A2, AV2                                       | 6    | _           | 66   | 295                              |  |
| Back-to-Back 4-Position Hydraulic & Pneumatic | 1" A2, AV2                                         | 9    | _           | 118  | 524                              |  |
| tom thumb°                                    | 1-1/8" A2, AV2<br>1-3/8" AV2<br>3/4" HV2<br>1" HV2 | 9    | _           | 149  | 663                              |  |
| IOIII IIIOIIIO                                | 1-3/8" AV2                                         | 12   | _           | 223  | 991                              |  |
| Page 110                                      | 3/4" HV2                                           | 6    | _           | 663  | 2948                             |  |
|                                               | 1" HV2                                             | 9    | _           | 1178 | 5240                             |  |
|                                               | 1-1/8" HV2                                         | 9    | _           | 1491 | 6632                             |  |
|                                               | 1-3/8" HV2                                         | 12   | _           | 2227 | 9907                             |  |
| A3V, H3V, A3                                  | 3/4" A3, A3V                                       | 6    |             | 66   | 295                              |  |
| 3-Position Hydraulic & Pneumatic              | 1" A3, A3V                                         | 9    | _           | 118  | 524                              |  |
| tom thumb°                                    | 1-1/8" A3, A3V<br>1-3/8" A3V<br>3/4" H3V<br>1" H3V | 9    | _           | 149  | 663                              |  |
| Tom momo                                      | 1-3/8" A3V                                         | 12   | _           | 223  | 991                              |  |
| Page 118                                      | 3/4" H3V                                           | 6    | _           | 663  | 2948                             |  |
|                                               | 1" H3V                                             | 9    | _           | 1178 | 5240                             |  |
|                                               | 1-1/8" H3V                                         | 9    | _           | 1491 | 6632                             |  |
|                                               | 1-3/8" H3V                                         | 12   | _           | 2227 | 9907                             |  |
| EA, EL, EH, ES                                | 3/4" EA                                            | 6    | _           | 66   | 295                              |  |
| Heavy Duty Hydraulic & Pneumatic              | 3/4" EL                                            | 6    | _           | 221  | 983                              |  |
| tom thumb <sup>®</sup>                        | 3/4" EH                                            | 6    | _           | 1326 | 5898                             |  |
| iom inomo                                     | 3/4" ES                                            | 6    | _           | 2210 | 9830                             |  |
| Page 126                                      | 1-1/8" EA                                          | 6    | _           | 149  | 663                              |  |
|                                               | 1-1/8" EL                                          | 6    | _           | 497  | 2210                             |  |
|                                               | 1-1/8" EH                                          | 6    | _           | 2982 | 13264                            |  |
|                                               | 1-1/8" EA<br>1-1/8" EL<br>1-1/8" EH<br>1-1/8" ES   | 6    | _           | 4970 | 22107                            |  |
|                                               | 1-3/8" EA                                          | 6    | _           | 223  | 991                              |  |
|                                               | 1-3/8" EL                                          | 6    | _           | 743  | 3305                             |  |
|                                               | 1-3/8" EH                                          | 6    | _           | 4455 | 19816                            |  |
|                                               | 1-3/8" ES                                          | 6    | _           | 7425 | 33028                            |  |

NOTE: Consult PHD for longer strokes.



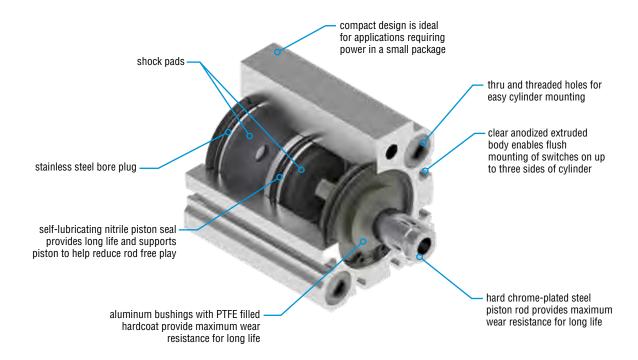
# **SELECTION GUIDE:** Electric Cylinders

The data shown is presented as a quick reference tool for determining which cylinder may fit your requirements. It is recommended to use the PHD online sizing app to easily and confidently determine which cylinder is best suited for your requirements.

| SERIES - ELECTRIC                                                              | SCREW     | SIZE | LEAD     | TRAVEL<br>MAX | MAX THRUST<br>(SEE NOTE) |              | MAX SPEED<br>(SEE NOTE) |              |
|--------------------------------------------------------------------------------|-----------|------|----------|---------------|--------------------------|--------------|-------------------------|--------------|
|                                                                                | VERSION   |      | mm       | mm            | lb                       | N            | in/sec                  | mm/sec       |
| ECP<br>Electric IP69K                                                          |           | 32   | 3<br>6   | 500           | 67.5<br>33.7             | 300<br>150   | 2.3<br>4.8              | 60<br>120    |
| (Not included in this catalog) Go to phdinc.com/cylinders for all product info | Lead - RL | 40   | 4<br>8   | 600           | 112<br>56                | 500<br>250   | 2.3<br>4.8              | 60<br>120    |
|                                                                                |           | 50   | 4<br>8   | 750           | 180<br>90                | 800<br>400   | 3.15<br>6.3             | 80<br>160    |
|                                                                                |           | 32   | 5<br>10  | 750           | 360<br>180               | 1600<br>800  | 3.15<br>6.3             | 80<br>160    |
|                                                                                | Ball - RB | 40   | 10<br>16 | 750           | 562<br>281               | 2500<br>1250 | 3.15<br>6.3             | 80<br>160    |
|                                                                                |           | 50   | 10<br>20 | 750           | 306<br>153               | 1360<br>680  | 3.15<br>6.3             | 80<br>160    |
| ECV<br>Electric Ball Screw & Lead Screw                                        | Lead - RL | 20   | 1.5<br>4 | 400           | 67.5<br>33.7             | 300<br>150   | 0.6<br>3.15             | 15<br>80     |
| (Not included in this catalog) Go to phdinc.com/cylinders for all product info |           | 25   | 1.5<br>3 | 400           | 112<br>56                | 500<br>250   | 1.2<br>2.4              | 30<br>60     |
| ior an product mio                                                             |           | 32   | 3<br>6   | 500           | 180<br>90                | 800<br>400   | 2.4<br>4.8              | 60<br>120    |
|                                                                                |           | 40   | 4<br>8   | 600           | 360<br>180               | 1600<br>800  | 3.15<br>6.3             | 80<br>160    |
|                                                                                |           | 50   | 4<br>8   | 750           | 562<br>281               | 2500<br>1250 | 3.15<br>6.3             | 80<br>160    |
| and and                                                                        |           | 32   | 5<br>10  | 1000          | 306<br>153               | 1360<br>680  | 19.6<br>39.3            | 500<br>1000  |
|                                                                                | Ball - RB | 40   | 10<br>16 | 1000          | 546<br>342               | 2430<br>1520 | 39.3<br>63              | 1000<br>1600 |
|                                                                                |           | 50   | 10<br>20 | 1000          | 991<br>564               | 4410<br>2510 | 39.3<br>78.7            | 1000<br>2000 |

**NOTE**: Refer to performance charts in engineering section of PHD Electric Actuators catalog and online sizing for specific performance limitations of a configured actuator.




### PNEUMATIC COMPACT CYLINDER

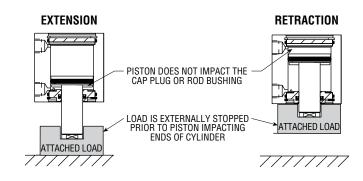
# **CRS**

#### **Major Benefits**

- · Compact design for applications where space is limited
- · Up to six switch slots for flush switch mounting
- · Self-lubricating nitrile piston seal for long cylinder life
- · Multiple mounting options
- Optional shock pads -BB in both directions add no length to cylinder, extend cylinder life, and minimize noise at end of piston travel






phdinc.com

#### **BEST PRACTICES FOR MAXIMUM CYLINDER LIFE**

Shown are the best ways to apply PHD Series CRS Cylinders. The key to proper application and long cylinder life is using the cylinder to provide power and motion while externally stopping any attached loads.

#### **APPLICATION #1 - ATTACHED LOAD**

Loads connected to the cylinder rod must always be stopped externally. Strokes, rod lengths, and attached loads should be designed so that the piston never impacts the head or cap. For vertical applications only.





## **ORDERING DATA:** Series CRS Cylinders

### TO ORDER SPECIFY:

Product, Series, Type, Design No., Mounting Style, Bore Size, Stroke, and Options.

#### **PRODUCT** C - Cylinder

#### **TYPE** S - Single Rod,

- Double Acting (standard)
- D Double Rod, Double Acting (See Note 4)

#### **IMPERIAL STROKE (CRx3)** STANDARD STROKE LENGTHS

1/4" = Minimum stroke in 1/8" increments (See Note 5)

| BORE<br>mm | MAXIMUM<br>STROKE (in) |
|------------|------------------------|
| 12         | 3.25                   |
| 16         | 3.25                   |
| 20         | 4.00                   |
| 25         | 4.00                   |
| 32         | 4.50                   |
| 40         | 4.50                   |
| 50         | 5.00                   |
| 63         | 7.00                   |

#### METRIC STROKE (CRx6) STANDARD STROKE LENGTHS

5 mm = Minimum stroke in 5 mm increments (See Note 5)

|   | ٠,        | ,                      |
|---|-----------|------------------------|
|   | )RE<br>im | MAXIMUM<br>STROKE (mm) |
| 1 | 2         | 80                     |
| 1 | 6         | 80                     |
| 2 | 20        | 100                    |
| 2 | 25        | 100                    |
| 3 | 32        | 115                    |
| 4 | 10        | 115                    |
| 5 | 50        | 125                    |
| 6 | 3         | 175                    |
|   |           |                        |







MOUNTING STYLE

All units have 4 thru holes

U - Universal (standard)

Thread and C'bore

8 places, 4 each end

**M-T22** 

#### **SERIES** R - Compact Round Bore

### DESIGN NO.

3 - Imperial 6 - Metric

|   | BORE SIZE |      |                 |       |  |  |  |  |
|---|-----------|------|-----------------|-------|--|--|--|--|
| I | 30RI      |      |                 | AREA  |  |  |  |  |
|   | mm        | in   | mm <sup>2</sup> | in²   |  |  |  |  |
|   | 12        | 0.47 | 113             | 0.175 |  |  |  |  |
|   | 16        | 0.63 | 201             | 0.312 |  |  |  |  |
|   | 20        | 0.79 | 314             | 0.486 |  |  |  |  |
|   | 25        | 0.98 | 490             | 0.760 |  |  |  |  |
|   | 32        | 1.26 | 804             | 1.247 |  |  |  |  |
|   | 40        | 1.57 | 1256            | 1.948 |  |  |  |  |
|   | 50        | 1.97 | 1963            | 3.045 |  |  |  |  |
|   | 63        | 2.48 | 3117            | 4.831 |  |  |  |  |

#### **IMPERIAL OPTIONS (CRx3)**

- BB Shock Pads in both directions
- (No additional cylinder length)
  Magnet for use with PHD Series JC1 Switches. See Notes 1 and 7.
- WP Wide piston for extra rod support (standard with -M). See Note 1.
- Extended length wrench flats
- K\_ Extra Rod Extension in 1/8" increments. Length code example: K1 = 1/8", K3 = 3/8", etc.
- T11 Male Rod End, fine thread
- T22 Male Rod End, coarse thread
- T44 Female Rod End, coarse thread (available on 20 mm through 63 mm sizes only)
  - Plain Rod End with wrench flats
- T88 Extended Male Rod End, fine thread
- T99 Extended Male Rod End, coarse thread
- V1 Fluoroelastomer Seals. See Note 2.
- Z1 Corrosion resistant, stainless steel rod and electroless nickel plated retaining rings. See Note 3.

#### **METRIC OPTIONS (CRx6)**

- BB Shock Pads in both directions (No additional cylinder length)
- Magnet for use with PHD Series JC1
- Switches. See Notes 1, 7, and 8.
  WP Wide piston for extra rod support (standard with -M). See Note 1.
- F11 Extended length wrench flats
- K\_ Extra Rod Extension in 5 mm increments. Length code example: K5 = 5 mm, K15 = 15 mm, etc.
- T22 Male Rod End
- T55 Plain Rod End with wrench flats
- T99 Extended Male Rod End
- V1 Fluoroelastomer Seals. See Note 2.
- Z1 Corrosion resistant, stainless steel rod and electroless nickel plated retaining rings. See Note 3.

#### SERIES JC1 MAGNETIC SWITCHES

| 02:::20 00::::::::::::::::::::::::::::: |                                   |  |  |  |  |  |  |
|-----------------------------------------|-----------------------------------|--|--|--|--|--|--|
| JC1 SWITCH                              | DESCRIPTION                       |  |  |  |  |  |  |
| JC1SDN-5                                | NPN DC Solid State, 5 meter cable |  |  |  |  |  |  |
| JC1SDP-5                                | PNP DC Solid State, 5 meter cable |  |  |  |  |  |  |
| JC1SDN-K                                | NPN DC Solid State, Quick Connect |  |  |  |  |  |  |
| JC1SDP-K                                | PNP DC Solid State, Quick Connect |  |  |  |  |  |  |
| JC1RDU-5                                | PNP or NPN DC Reed, 5 meter cable |  |  |  |  |  |  |
| JC1RDU-K                                | PNP or NPN DC Reed, Quick Connect |  |  |  |  |  |  |
| JC1ADU-K                                | AC Reed, Quick Connect            |  |  |  |  |  |  |

**NOTE:** See Switches and Sensors section for additional switch information and complete specification. Switches must be ordered separately.

#### NOTES:

- 1) Options -M and -WP add 1/4" [6.38 mm] to the overall length.
- Option -V1 may reduce cylinder lifespan due to fluorocarbon seal material.
- Option -Z1 may reduce cylinder lifespan due to stainless steel rod in place of chrome plated steel.
- 4) Double rod units' rear rod will receive same rod option as single rod.
- 5) For longer stroke lengths available, consult PHD.
- See pages 14 to 17 for accessories.
- 7) PHD recommends the use of stainless steel or de-magnetized fasteners on units with the -M option.
- 8) See options pages for switch ordering information.



Options may affect unit length. See dimensional pages and option information details.

#### CORDSETS FOR SERIES JC1 SWITCHES

| PART NO.    | DESCRIPTION                                          |  |  |  |  |
|-------------|------------------------------------------------------|--|--|--|--|
| 63549-02    | M8, 3 pin, Straight Female Connector, 2 meter cable  |  |  |  |  |
| 63549-05    | M8, 3 pin, Straight Female Connector, 5 meter cable  |  |  |  |  |
| 81284-1-010 | M12, 4 pin, Straight Female Connector, 2 meter cable |  |  |  |  |

**NOTE:** Cordsets are ordered separately.

### **CAD & Sizing Assistance**

Use PHD's free online Product Sizing and CAD Configurator at phdinc.com/myphd



## **ENGINEERING DATA:** Series CRS Cylinders

| SPECIFICATIONS     | SERIES CRS                                                                                                 |
|--------------------|------------------------------------------------------------------------------------------------------------|
| OPERATING PRESSURE | 10 psi min to 150 psi max at zero load [0.7 bar min to 10 bar max] air                                     |
| STROKE TOLERANCE   | ± 0.031 inch [± 0.8 mm] (See Shock Pad Usage)                                                              |
| TEMPERATURE LIMITS | -20° to +180°F [-29° to +82°C]                                                                             |
| VELOCITY           | 20 in/sec [0.5 m/sec] typical min, zero load at 100 psi [7 bar]                                            |
| LIFE EXPECTANCY    | 70 million linear inches [1.77 million linear meters] minimum at operating temperatures under 120°F [49°C] |
|                    | (-V1 & -Z1 options may reduce life)                                                                        |
| LUBRICATION        | Pre-lubricated for use with non-lubricated or lubricated air                                               |
| MAINTENANCE        | Field repairable                                                                                           |

#### **CYLINDER FORCE AND WEIGHT**

| BORE | BORE SIZE |       | OD<br>Ieter | ROD<br>DIRECTION | AKEA            |                 | BASE<br>WEIGHT |           |              | PER 1"<br>F STROKE |      |
|------|-----------|-------|-------------|------------------|-----------------|-----------------|----------------|-----------|--------------|--------------------|------|
| mm   | in        | in    | mm          | DITIEOTION       | in <sup>2</sup> | mm <sup>2</sup> | lb             | kg        | lb           | kg                 |      |
| 12   | 0.472     | 0.250 | 6.35        | EXTEND           | 0.175           | 113             | 0.11           | 0.05      | 0.085        | 0.04               |      |
| 12   | 0.472     | 0.230 | 0.55        | RETRACT          | 0.126           | 81              | 0.11           | 0.03      | 0.000        | 0.04               |      |
| 16   | 0.630     | 0.250 | 6.35        | EXTEND           | 0.312           | 201             | 0.17           | 0.08      | 0.10         | 0.05               |      |
| 10   | 0.030     | 0.230 | 0.55        | RETRACT          | 0.263           | 169             | 0.17           | 0.00      | 0.10         | 0.03               |      |
| 20   | 0.787     | 0.375 | 9.53        | EXTEND           | 0.487           | 314             | 0.25           | 0.11      | 0.15         | 0.07               |      |
| 20   | 0.707     | 0.373 | 9.55        | RETRACT          | 0.376           | 242             | 0.25           |           | 0.15         | 0.07               |      |
| 25   | 0.984     | 0.375 | 9.53        | EXTEND           | 0.761           | 490             | 0.26           | 0.12      | 0.16         | 0.07               |      |
| 23   | 0.904     | 0.373 | 9.55        | RETRACT          | 0.650           | 419             | 0.20           | 0.12      | 0.10         | 0.07               |      |
| 32   | 1.260     | 0.625 | 15.88       | EXTEND           | 1.247           | 804             | 0.48           | 0.22      | 0.26         | 0.12               |      |
| 32   | 1.200     | 0.023 | 13.00       | RETRACT          | 0.940           | 606             | 0.40           | 0.22      | 0.20         | 0.12               |      |
| 40   | 1.575     | 0.625 | 15.88       | EXTEND           | 1.948           | 1256            | 0.60           | 0.07      | 7 0.30       | 0.14               |      |
| 40   | 1.575     | 0.623 | 13.00       | RETRACT          | 1.641           | 1058            | 0.60           | 0.27      |              |                    |      |
| 50   | 1.969     | 0.750 | 19.05       | EXTEND           | 3.043           | 1963            | 0.78           | 0.70 0.25 | 8 0.35 0.4   | 0.40               | 0.18 |
| 30   | 1.909     | 0.750 | 19.00       | RETRACT          | 2.602           | 1678            | 0.70           | 0.33      | 0.40         | 0.10               |      |
| 63   | 2.480     | 0.750 | 19.05       | EXTEND           | 4.832           | 3117            | 0.95           | 0.05 0.42 | 05 0.43 0.48 | 0.48               | 0.22 |
| - 03 | 2.400     | 0.750 | 19.00       | RETRACT          | 4.390           | 2832            | 0.95           | 0.43      | 0.40         | 0.22               |      |

**NOTE:** Use retract figures for calculating double rod cylinder forces in both directions.

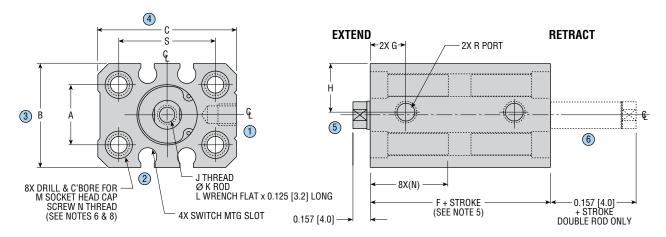
| CYLINDER FORCE CALCULATIONS               |                 |     |  |  |  |  |  |
|-------------------------------------------|-----------------|-----|--|--|--|--|--|
| Imperial Metric F = P x A F = 0.1 x P x   |                 |     |  |  |  |  |  |
| F = Cylinder Force                        | lbs             | N   |  |  |  |  |  |
| P = Operating Pressure                    | psi             | bar |  |  |  |  |  |
| A = Effective Area<br>(Extend or Retract) | in <sup>2</sup> | mm² |  |  |  |  |  |

#### **APPLICATION**

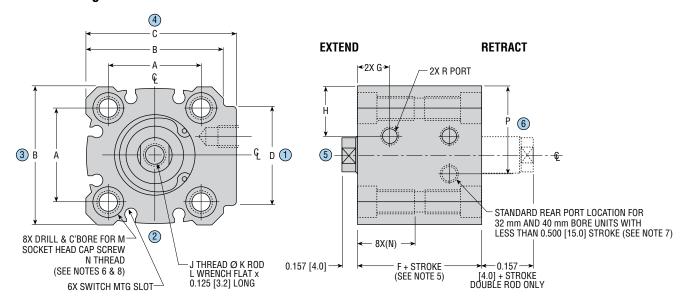
The PHD Series CRS Cylinders are designed for use as a source of power and motion. As with typical compact cylinders, the Series CRS Cylinder is not intended for applications where side loads or impact with attached loads are present. PHD recommends the use of external stops to ensure maximum cylinder life. See best application practices on page 6.

#### **SHOCK PAD USAGE**

Optional shock pads are recommended for applications where the piston travels the full stroke length and contacts the bushing and plug (with no attached loads). The use of shock pads reduces noise and provides maximum cylinder life in these applications. Stroke tolerance changes to ±0.050 [±1.3 mm] with -BB option.


### **Application & Sizing Assistance**

Use PHD's free online Product Sizing and Application at www.phdinc.com/apps/sizing




## **DIMENSIONS:** Series CRS Cylinders

#### 12 mm and 16 mm BORE



#### 20 mm through 63 mm BORE



- 1) DIMENSIONS SHOWN IN [ ] ARE IN mm FOR METRIC UNITS [CRx6]
- 2) DESIGNATED CENTERLINE IS CENTERLINE OF CYLINDER BORE
- 3) UNLESS OTHERWISE DIMENSIONED, MOUNTING HOLE PATTERNS AND OTHER FEATURES ARE CENTERED ON DESIGNATED CYLINDER CENTERLINE
- 4) 1/4" [5 mm] MINIMUM STROKE REQUIRED
- 5) SEE DIMENSION CHART ON NEXT PAGE. DIMENSION F IS DIFFERENT FOR "PLAIN" UNIT AND WITH OPTIONS -M AND -WP.
- 6) C'BORE DEPTH OF MOUNTING HOLES MUST BE CONSIDERED TO DETERMINE PROPER MOUNTING FASTENER LENGTH
  7) FOR 32 mm AND 40 mm BORE UNITS WITH STROKES LESS THAN 0.500" [15 mm], PHD RECOMMENDS THE USE OF FITTINGS WITH A HEX NO LARGER THAN 7/16" [13 mm] AND NOTE REAR PORT LOCATION CHANGE
- 8) PHD RECOMMENDS THE USE OF STAINLESS STEEL OR DE-MAGNETIZED FASTENERS ON UNITS WITH THE -M OPTION.



# **DIMENSIONS:** Series CRS Cylinders

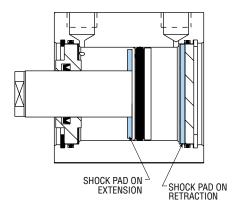
|               |                  |                 |                 |        |                 | LETTER DI                 | MENSION         |                 |                                |                 |                |            |
|---------------|------------------|-----------------|-----------------|--------|-----------------|---------------------------|-----------------|-----------------|--------------------------------|-----------------|----------------|------------|
| BORE          | A                | В               | C               | D      | F<br>Plain      | F WITH<br>OPTIONS -M, -WP | G               | Н               | J THREAD                       | K               | L              | M          |
| 0.472<br>[12] | 0.550<br>[13.97] | 0.944<br>[24.0] | 1.260<br>[32.0] | _      | 0.904<br>[23.0] | 1.154 [29.4]              | 0.325<br>[8.26] | 0.472<br>[12.0] | 8-32 x 0.250<br>[M4 x 0.7 x 6] | 0.250<br>[6.35] | 0.219<br>[5.6] | #6<br>[M4] |
| 0.630<br>[16] | 0.710<br>[18.03] | 1.104<br>[28.0] | 1.340<br>[34.0] | _      | 0.904<br>[23.0] | 1.154 [29.4]              | 0.325<br>[8.26] | 0.454<br>[11.5] | 8-32 x 0.250<br>[M4 x 0.7 x 6] | 0.250<br>[6.35] | 0.219<br>[5.6] | #6<br>[M4] |
| 0.787         | 1.000            | 1.476           | 1.576           | 0.788  | 0.920           | 1.170 [29.7]              | 0.350           | 0.531           | 1/4-28 x 0.375                 | 0.375           | 0.312          | #10        |
| [20]          | [25.4]           | [37.5]          | [40.0]          | [20.0] | [23.4]          |                           | [8.89]          | [13.5]          | [M6 x 1.0 x 9]                 | [9.53]          | [7.9]          | [M5]       |
| 0.984         | 1.100            | 1.576           | 1.746           | 1.000  | 0.920           | 1.170 [29.7]              | 0.350           | 0.552           | 1/4-28 x 0.375                 | 0.375           | 0.312          | #10        |
| [25]          | [28.0]           | [40.0]          | [44.4]          | [25.4] | [23.4]          |                           | [8.89]          | [14.0]          | [M6 x 1.0 x 9]                 | [9.53]          | [7.9]          | [M5]       |
| 1.260         | 1.339            | 1.870           | 2.037           | 1.340  | 1.022           | 1.272 [32.3]              | 0.375           | 0.610           | 5/16-24 x 0.470                | 0.625           | 0.500          | #10        |
| [32]          | [34.0]           | [47.5]          | [52.0]          | [34.0] | [26.0]          |                           | [9.53]          | [15.5]          | [M8 x 1.25 x 11]               | [15.88]         | [12.7]         | [M5]       |
| 1.575         | 1.575            | 2.205           | 2.363           | 1.420  | 1.022           | 1.272 [32.3]              | 0.360           | 0.738           | 5/16-24 x 0.470                | 0.625           | 0.500          | #10        |
| [40]          | [40.0]           | [56.0]          | [60.0]          | [36.0] | [26.0]          |                           | [9.14]          | [18.8]          | [M8 x 1.25 x 11]               | [15.88]         | [12.7]         | [M5]       |
| 1.969         | 1.969            | 2.598           | 2.795           | 1.600  | 1.300           | 1.550 [39.4]              | 0.472           | 0.823           | 3/8-24 x 0.563                 | 0.750           | 0.625          | 1/4        |
| [50]          | [50.0]           | [66.0]          | [71.0]          | [40.6] | [33.0]          |                           | [12.00]         | [21.0]          | [M10 x 1.5 x 13]               | [19.05]         | [15.9]         | [M6]       |
| 2.480         | 2.362            | 3.070           | 3.266           | 2.094  | 1.420           | 1.670 [42.4]              | 0.512           | 0.865           | 3/8-24 x 0.563                 | 0.750           | 0.625          | 1/4        |
| [63]          | [60.0]           | [78.0]          | [83.0]          | [53.2] | [36.0]          |                           | [13.00]         | [22.0]          | [M10 x 1.5 x 13]               | [19.05]         | [15.9]         | [M6]       |

|               | LET                                   | TTER DIN        | /IENSION                       |                 |
|---------------|---------------------------------------|-----------------|--------------------------------|-----------------|
| BORE          | N THREAD                              | P               | R                              | S               |
| 0.472<br>[12] | 10-24 x 0.550<br>[M5 x 0.8 x 14.5]    | _               | 10-32 x 0.15<br>[M5 x 0.8 x 4] | 0.866<br>[22.0] |
| 0.630<br>[16] | 10-24 x 0.550<br>[M5 x 0.8 x 14.5]    | _               | 10-32 x 0.15<br>[M5 x 0.8 x 4] | 0.946<br>[24.0] |
| 0.787<br>[20] | 1/4-20 x 0.875<br>[M6 x 1.0 x 22.5]   | _               | 10-32 x 0.15<br>[M5 x 0.8 x 4] | _               |
| 0.984<br>[25] | 1/4-20 x 0.875<br>[M6 x 1.0 x 22.5]   | _               | 10-32 x 0.15<br>[M5 x 0.8 x 4] | _               |
| 1.260<br>[32] | 1/4-20 x 0.875<br>[M6 x 1.0 x 22.5]   | 0.900<br>[22.9] | 1/8 NPT<br>[1/8 BSP]           | _               |
| 1.575<br>[40] | 1/4-20 x 0.875<br>[M6 x 1.0 x 22.5]   | 1.072<br>[27.2] | 1/8 NPT<br>[1/8 BSP]           | _               |
| 1.969<br>[50] | 5/16-18 x 0.900<br>[M8 x 1.25 x 22.5] | _               | 1/8 NPT<br>[1/8 BSP]           | _               |
| 2.480<br>[63] | 5/16-18 x 0.900<br>[M8 x 1.25 x 22.5] | _               | 1/4 NPT<br>[1/4 BSP]           | _               |

Numbers in [ ] are in mm for metric units [CRx6].

### **CAD & Sizing Assistance**

Use PHD's free online Product Sizing and CAD Configurator at **phdinc.com/myphd** 


All dimensions are reference only unless specifically toleranced.





# SHOCK PADS ON EXTENSION AND RETRACTION

Shock pads eliminate metal-to-metal contact and minimize piston impact. Shock pads are recommended for applications where the piston travels the full stroke length and contacts the head and/or cap (with no attached loads). The use of shock pads reduces noise and provides maximum cylinder life in these applications.





#### **EXTENDED LENGTH WRENCH FLATS**

The design of a compact cylinder requires the length to be as short as possible. The standard wrench flat length is 0.125" [3 mm]. The option -F11 provides wrench flats which allow standard wrench access.

| BORE<br>[mm] | EXTE  | A<br>NDED<br>H Flats | I<br>R(<br>Exter | =     |
|--------------|-------|----------------------|------------------|-------|
| 12/16        | 0.200 | [5.08]               | 0.250            | [6.5] |
| 20/25        | 0.200 | [5.08]               | 0.250            | [6.5] |
| 32/40        | 0.290 | [8.00]               | 0.344            | [9.0] |
| 50/63        | 0.290 | [8.00]               | 0.344            | [9.0] |

Numbers in [ ] are in mm for metric units [CRx6].



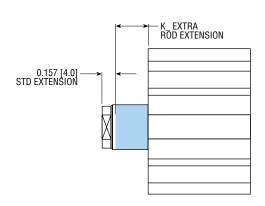


#### **EXTRA ROD EXTENSION**

Extra rod extension can be achieved by specifying the option -K followed by the length code.

Length code example (for imperial CRx3 units)

K1 = 1/8" of extra rod extension


K3 = 3/8", etc.

Length code example (for metric CRx6 units)

K5 = 5 mm of extra rod extension

K15 = 15 mm, etc.

0.157" [4 mm] of rod extension is standard. Available in 1/8" [5 mm] increments only.



#### **CAD & Sizing Assistance**

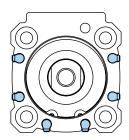
Use PHD's free online Product Sizing and CAD Configurator at phdinc.com/myphd

All dimensions are reference only unless specifically toleranced.





#### **MAGNETIC PISTON FOR SERIES JC1 SWITCHES**


This option equips the cylinder with a magnetic band on the piston for use with PHD Series JC1 Switches. These switches mount easily into the integral slots in the body. Hand tighten the setscrew until the switch is securely retained. Do not overtighten. PHD recommends the use of stainless steel or de-magnetized fasteners on units with this option.

NOTE: Option -M adds 0.250 in [6.38 mm] to the overall length of the cylinder of a plain unit.

#### **SERIES JC1 MAGNETIC SWITCHES**

| JC1 SWITCH | DESCRIPTION                       |
|------------|-----------------------------------|
| JC1SDN-5   | NPN DC Solid State, 5 meter cable |
| JC1SDP-5   | PNP DC Solid State, 5 meter cable |
| JC1SDN-K   | NPN DC Solid State, Quick Connect |
| JC1SDP-K   | PNP DC Solid State, Quick Connect |
| JC1RDU-5   | PNP or NPN DC Reed, 5 meter cable |
| JC1RDU-K   | PNP or NPN DC Reed, Quick Connect |
| JC1ADU-K   | AC Reed, Quick Connect            |

**NOTE:** See Switches and Sensors section for additional switch information and complete specification. Switches must be ordered separately.



#### **CORDSETS FOR SERIES JC1 SWITCHES**

| PART NO.    | DESCRIPTION                                          |
|-------------|------------------------------------------------------|
| 63549-02    | M8, 3 pin, Straight Female Connector, 2 meter cable  |
| 63549-05    | M8, 3 pin, Straight Female Connector, 5 meter cable  |
| 81284-1-010 | M12, 4 pin, Straight Female Connector, 2 meter cable |

NOTE: Cordsets are ordered separately.



#### WIDE PISTON FOR EXTRA **ROD END SUPPORT**

This option provides additional rod end stability. All units with magnetic pistons will automatically receive a wide piston to accommodate the magnet.

NOTE: Option -WP, adds 0.250 in [6.38 mm] to the overall length of the cylinder of a plain unit.



#### FLUOROELASTOMER SEALS

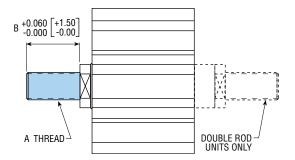
Fluoroelastomer seals are compatible with certain fluids which degrade standard Nitrile seals. Seal compatibility should be checked with the fluid manufacturer for correct application. Consult PHD for high temperature use.



T11

# MALE ROD END, FINE THREAD (Not available on CRx6 units)




#### MALE ROD END, COARSE THREAD

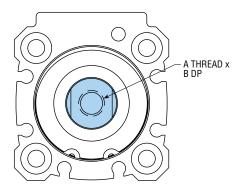
These options provide a studded male rod end in place of the standard female threaded rod end. The metric CRS is available with coarse threads only. See pages 9 and 10 for specifications of standard rod ends.

|   | BORE<br>[mm] | -T11<br>Fine<br>A Thread | C       | -T22<br>Darse<br>'Hread | В     |        |  |  |
|---|--------------|--------------------------|---------|-------------------------|-------|--------|--|--|
|   | 12/16        | N/A                      | 8-32    | [M4 x 0.7]              | 0.325 | [8.5]  |  |  |
| ĺ | 20/25        | 1/4-28                   | 1/4-20  | [M6 x 1.0]              | 0.580 | [14.9] |  |  |
| ĺ | 32/40        | 5/16-24                  | 5/16-18 | [M8 x 1.25]             | 0.625 | [17.5] |  |  |
| I | 50/63        | 3/8-24                   | 3/8-16  | [M10 x 1.5]             | 0.810 | [20.5] |  |  |

#### NOTES:

- 1) Numbers in [ ] are in mm for metric units [CRx6].
- 2) On double rod units, rear rod receives same rod end as single rod.



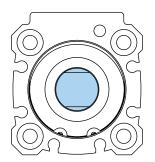

# T44

# FEMALE ROD END, COARSE THREAD (CRx3 20-63 units only)

This option provides a female coarse thread rod end. This option can be applied to imperial 20 mm through 63 mm bore units. The imperial 12 mm and 16 mm bore units have an 8-32 coarse thread as standard. See pages 9 and 10 for standard thread sizes. The metric 12 mm through 63 mm bore units have coarse threads as standard.

| BORE  |         | -T44 C | DARSE |       |  |  |  |
|-------|---------|--------|-------|-------|--|--|--|
| [mm]  | A THE   | READ   | В     |       |  |  |  |
| 12/16 | (STD)   | (STD)  | (STD) | (STD) |  |  |  |
| 20/25 | 1/4-20  | (STD)  | 0.375 | (STD) |  |  |  |
| 32/40 | 5/16-18 | (STD)  | 0.470 | (STD) |  |  |  |
| 50/63 | 3/8-16  | (STD)  | 0.562 | (STD) |  |  |  |

**NOTE:** On double rod units, rear rod receives same rod end as single rod.




# **T55**

#### **PLAIN ROD END**

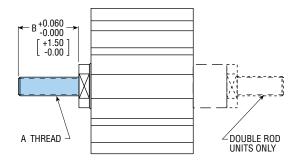
This option provides a plain rod end with wrench flats. Standard PHD Compact Cylinders are supplied with a female rod end.

**NOTE:** On double rod units, rear rod receives same rod end as single rod.





# **OPTIONS:** Series CRS Cylinders


T88 EXTE

EXTENDED MALE ROD END, FINE THREAD (Not available on CRx6 units)

T99

EXTENDED MALE ROD END, COARSE THREAD

These options provide a studded male rod end with extended length threads. Metric CRS units are available with coarse threads only. See previous page for standard length male rod end options.

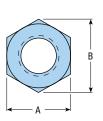


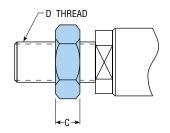
| BORE<br>[mm] | -T88<br>FINE<br>A THREAD | CO      | -T99<br>Darse<br>Hread | Ī     | 3      |
|--------------|--------------------------|---------|------------------------|-------|--------|
| 12/16        | N/A                      | 8-32    | [M4 x 0.7]             | 0.700 | [17.5] |
| 20/25        | 1/4-28                   | 1/4-20  | [M6 x 1.0]             | 1.200 | [29.5] |
| 32/40        | 5/16-24                  | 5/16-18 | [M8 x 1.25]            | 1.250 | [32.5] |
| 50/63        | 3/8-24                   | 3/8-16  | [M10 x 1.5]            | 1.690 | [35.5] |

#### NOTES

- 1) Numbers in [ ] are in mm for metric units [CRx6].
- On double rod units, rear rod receives same rod end as single rod.




#### **CORROSION RESISTANT**


Electroless nickel plating is applied to the retaining rings and a stainless steel piston rod is supplied. Male rod ends are not plated when this option is specified. This option may reduce seal life.

# **ACCESSORIES:** Series CRS Cylinders

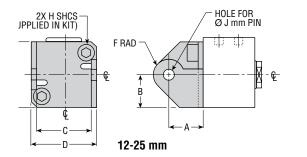
#### **HEXAGONAL NUT KIT**

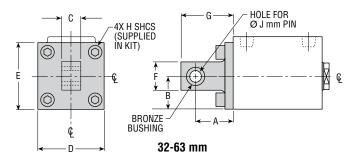
Nut kits include a hexagonal nut for use with male studded rod ends. All male rod end options are shipped without hexagonal nuts.





| BORE  | D           | IMENSION | IS    | D THREAD | KIT NO.  | D THREAD    | KIT NO.    |  |
|-------|-------------|----------|-------|----------|----------|-------------|------------|--|
| [mm]  | Α           | В        | C     | FINE     | KII NU.  | COARSE      | COARSE     |  |
| 12/16 | 0.335 0.385 |          | 0.125 | N/A      | N/A      | 8-32        | 1972-039   |  |
| 12/10 | [7.0]       | [7.7]    | [2.2] | [N/A]    | [N/A]    | [M4 x 0.7]  | [3204-035] |  |
| 20/25 | 0.432       | 0.487    | 0.157 | 1/4-28   | 1972-015 | 1/4-20      | 1972-014   |  |
| 20/23 | [10.0]      | [11.0]   | [3.2] | [N/A]    | [N/A]    | [M6 x 1.0]  | [3204-001] |  |
| 32/40 | 0.500       | 0.577    | 0.187 | 5/16-24  | 1972-017 | 5/16-18     | 1972-016   |  |
| 32/40 | [13.0]      | [14.4]   | [4.0] | [N/A]    | [N/A]    | [M8 x 1.25] | [3204-002] |  |
| 50/63 | 0.562       | 0.650    | 0.215 | 3/8-24   | 1972-019 | 3/8-16      | 1972-018   |  |
| 50/63 | [17.0]      | [18.9]   | [5.0] | [N/A]    | [N/A]    | [M10 x 1.5] | [3204-025] |  |


NOTE: Numbers in [ ] are in mm for metric units [CRx6].

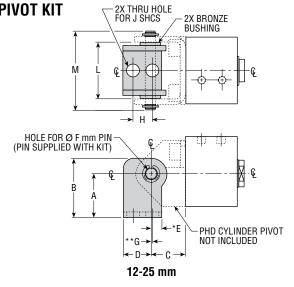

All dimensions are reference only unless specifically toleranced.

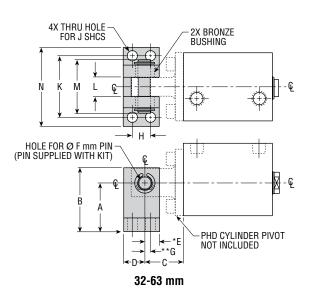


## **ACCESSORIES:** Series CRS Cylinders

#### CYLINDER PIVOT KIT







|   | BORE   |                 |                 |                  |                 | DIMENSIC        | ONS             |                 |                        |                 | KIT NO.       | KIT NO.     |
|---|--------|-----------------|-----------------|------------------|-----------------|-----------------|-----------------|-----------------|------------------------|-----------------|---------------|-------------|
|   | [mm]   | A               | В               | C                | D               | E               | F               | G               | Н                      | Ø٦              | IMPERIAL CRx3 | METRIC CRx6 |
|   | 12     | 0.650<br>[16.5] | 0.638<br>[16.2] | 0.905<br>[23.00] | 1.064<br>[27.0] | 1.276<br>[32.4] | 0.281<br>[7.1]  | _               | 10-24<br>[M5 x 0.8]    | 0.197<br>[5.0]  | 60278-1       | 60286-1     |
|   | 16     | 0.650<br>[16.5] | 0.678<br>[17.2] | 0.905<br>[23.00] | 1.064<br>[27.0] | 1.356<br>[34.4] | 0.281<br>[7.1]  | _               | 10-24<br>[M5 x 0.8]    | 0.197<br>[5.0]  | 60279-1       | 60287-1     |
|   | 20     | 0.790<br>[20.1] | 0.750<br>[19.0] | 1.250<br>[31.75] | 1.500<br>[38.1] | 1.500<br>[38.1] | 0.355<br>[9.0]  | _               | 1/4-20<br>[M6 x 1.0]   | 0.236<br>[6.0]  | 60280-1       | 60288-1     |
|   | 25     | 0.790<br>[20.1] | 0.800<br>[20.3] | 1.250<br>[31.75] | 1.500<br>[38.1] | 1.600<br>[40.6] | 0.355<br>[9.0]  | _               | 1/4-20<br>[M6 x 1.0]   | 0.236<br>[6.0]  | 60281-1       | 60289-1     |
|   | 32     | 1.065<br>[27.0] | 0.935<br>[23.8] | 0.490<br>[12.45] | 1.870<br>[47.5] | 1.870<br>[47.5] | 0.820<br>[21.0] | 1.475<br>[37.5] | 1/4-20<br>[M6 x 1.0]   | 0.394<br>[10.0] | 60282-1       | 60290-1     |
|   | 40     | 1.065<br>[27.0] | 1.105<br>[28.1] | 0.490<br>[12.45] | 2.210<br>[56.1] | 2.210<br>[56.1] | 0.820<br>[21.0] | 1.475<br>[37.5] | 1/4-20<br>[M6 x 1.0]   | 0.394<br>[10.0] | 60283-1       | 60291-1     |
|   | 50     | 1.460<br>[37.1] | 1.300<br>[33.0] | 0.600<br>[15.24] | 2.600<br>[66.0] | 2.600<br>[66.0] | 1.000<br>[25.4] | 1.970<br>[50.0] | 5/16-18<br>[M8 x 1.25] | 0.472<br>[12.0] | 60284-1       | 60292-1     |
|   | 63     | 1.460<br>[37.1] | 1.500<br>[38.1] | 0.600<br>[15.24] | 3.000<br>[76.2] | 3.000<br>[76.2] | 1.000<br>[25.4] | 1.970<br>[50.0] | 5/16-18<br>[M8 x 1.25] | 0.472<br>[12.0] | 60285-1       | 60293-1     |
| Λ | lumber | sin[]ar         | e in mm fo      | or metric ι      | inits [CRx      | 6].             |                 |                 |                        |                 | _             |             |

#### NOTES:

- 1) 12-25 mm IS BRITE ZINC PLATED STEEL
- 32-63 mm IS ANODIZED ALUMINUM
- WITH LUBRICATED BRONZE BUSHINGS 3) FULCRUM PIN NOT INCLUDED (SEE "FULCRUM PIN KITS" TO PURCHASE)
- DESIGNATED CENTERLINE & IS CENTERLINE OF CYLINDER.
- 5) UNLESS OTHERWISE DIMENSIONED, FEATURES ARE CENTERED ON CYLINDER CENTERLINE.

**BASE PIVOT KIT** 



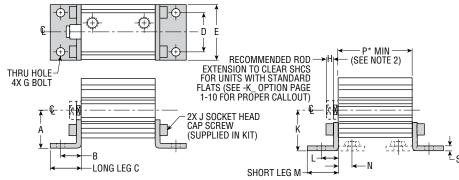


| BORE    |                 |                 |                 |                 |                 | DIN             | TENSION        | IS              |              |                 |                 |                 |                 | KIT: CRx3x, CRx6x |
|---------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|----------------|-----------------|--------------|-----------------|-----------------|-----------------|-----------------|-------------------|
| [mm]    | Α               | В               | C               | D               | E               | ØF              | G              | Н               | J            | K               | L               | M               | N               | IMPERIAL/METRIC   |
| 12/16   | 0.865<br>[22.0] | 1.145<br>[29.0] | 0.650<br>[16.5] | 0.490<br>[12.5] | 0.220<br>[5.6]  | 0.197<br>[5.0]  | 0.060<br>[1.5] | 0.375<br>[9.5]  | #10<br>[M5]  | _               | 0.877<br>[22.3] | 1.300<br>[33.0] | _               | 60294-1           |
| 20/25   | 1.000<br>[25.4] | 1.355<br>[34.4] | 0.790<br>[20.1] | 0.630<br>[16.0] | 0.260<br>[6.5]  | 0.237<br>[6.0]  | 0.040<br>[1.0] | 0.435<br>[11.0] | 1/4<br>[M6]  | _               | 1.221<br>[31.0] | 1.730<br>[44.0] | _               | 60295-1           |
| 32/40   | 1.375<br>[34.9] | 1.800<br>[45.7] | 1.065<br>[27.0] | 0.600<br>[15.2] | 0.400<br>[10.2] | 0.394<br>[10.0] | 0.156<br>[4.0] | 0.510<br>[13.0] | 1/4<br>[M6]  | 1.695<br>[43.0] | 0.540<br>[13.7] | 1.490<br>[38.0] | 2.165<br>[55.0] | 60296-1           |
| 50/63   | 1.890<br>[48.0] | 2.365<br>[60.0] | 1.460<br>[37.1] | 0.755<br>[19.2] | 0.508<br>[12.9] | 0.472<br>[12.0] | 0.236<br>[6.0] | 0.709<br>[18.0] | 5/16<br>[M8] | 2.265<br>[57.5] | 0.659<br>[16.7] | 1.970<br>[50.0] | 2.835<br>[72.0] | 60297-1           |
| Numbers | s in [ ] a      | re in mr        | n for me        | tric unit       | s [CRx6]        |                 |                |                 |              |                 |                 |                 |                 |                   |

All dimensions are reference only unless specifically toleranced.

- 1) 12-25 mm IS BRITE ZINC PLATED STEEL WITH LUBRICATED BRONZE BUSHINGS
- 2) 32-63 mm IS ANODIZED ALUMINUM WITH LUBRICATED BRONZE BUSHINGS
- 3) FULCRUM PIN INCLUDED. DOES NOT INCLUDE CYLINDER PIVOT.
- \*E IS TO CENTER OF PIVOT PIN
- \*\*G IS FROM CENTER OF PIVOT PIN TO CENTER OF FIRST MOUNTING HOLE.
- 6) DESIGNATED CENTERLINE € IS CENTERLINE OF CYLINDER.




## **ACCESSORIES:** Series CRS Cylinders

#### F MOUNT KIT

#### (Must be ordered separately)

Plated steel for use where front or rear mounting is not feasible. Brackets are narrow allowing units to be used where space to the side of the cylinder is limited.

**NOTE:** Brackets may be mounted in different configurations. Each kit includes 1 bracket and cylinder mounting hardware. Two kits recommended per unit.



THIS VIEW WITH LONG LEG AS MOUNTING SURFACE

THIS VIEW WITH SHORT LEG AS MOUNTING SURFACE

| BORE |                 |                 |                  |                 |                  |              | DII             | MENSIONS               |                 |                 |                 |                 |               |                 | KIT NO.  | KIT NO. |
|------|-----------------|-----------------|------------------|-----------------|------------------|--------------|-----------------|------------------------|-----------------|-----------------|-----------------|-----------------|---------------|-----------------|----------|---------|
| [mm] | Α               | В               | C                | D               | E                | G            | Н               | J                      | K               | L               | M               | N               | P* MIN        | S               | IMPERIAL | METRIC  |
| 12   | 0.874<br>[22.2] | 0.553<br>[14.0] | 0.770<br>[19.6]  | 0.550<br>[14.0] | 0.950<br>[24.13] | #10<br>[M5]  | 0.250<br>[5.0]  | 10-24<br>[M5 x 0.8]    | 0.986<br>[25.0] | 0.441<br>[11.2] | 0.660<br>[17.0] | 0.336<br>[8.5]  | 3/8<br>[10.0] | 0.105<br>[2.67] | 58904-1  | 60302-1 |
| 16   | 0.945<br>[24.0] | 0.589<br>[15.0] | 0.850<br>[21.6]  | 0.710<br>[18.0] | 1.110<br>[28.19] | #10<br>[M5]  | 0.250<br>[10.0] | 10-24<br>[M5 x 0.8]    | 1.062<br>[27.0] | 0.475<br>[12.1] | 0.730<br>[18.5] | 0.355<br>[9.0]  | 3/8<br>[10.0] | 0.120<br>[3.05] | 58905-1  | 60303-1 |
| 20   | 1.000<br>[25.4] | 0.680<br>[17.3] | 0.940<br>[23.9]  | 1.000<br>[25.4] | 1.560<br>[39.62] | 1/4<br>[M6]  | 0.375<br>[10.0] | 1/4-20<br>[M6 x 1.0]   | 1.180<br>[30.0] | 0.500<br>[12.7] | 0.760<br>[19.3] | 0.380<br>[9.7]  | 1/2<br>[15.0] | 0.120<br>[3.05] | 58906-1  | 60304-1 |
| 25   | 1.100<br>[27.9] | 0.690<br>[17.5] | 0.950<br>[24.1]  | 1.100<br>[27.9] | 1.610<br>[40.90] | 1/4<br>[M6]  | 0.375<br>[10.0] | 1/4-20<br>[M6 x 1.0]   | 1.240<br>[31.5] | 0.550<br>[14.0] | 0.825<br>[21.0] | 0.415<br>[10.5] | 1/2<br>[15.0] | 0.135<br>[3.43] | 58907-1  | 60305-1 |
| 32   | 1.280<br>[32.5] | 0.730<br>[18.5] | 1.035<br>[26.3]  | 1.340<br>[34.0] | 1.890<br>[48.00] | 1/4<br>[M6]  | 0.375<br>[10.0] | 1/4-20<br>[M6 x 1.0]   | 1.400<br>[35.5] | 0.610<br>[15.5] | 0.915<br>[23.2] | 0.446<br>[11.3] | 5/8<br>[20.0] | 0.164<br>[4.17] | 58908-1  | 60306-1 |
| 40   | 1.412<br>[35.9] | 0.807<br>[20.5] | 1.180<br>[30.00] | 1.575<br>[40.0] | 2.205<br>[56.00] | 1/4<br>[M6]  | 0.375<br>[10.0] | 1/4-20<br>[M6 x 1.0]   | 1.595<br>[40.5] | 0.625<br>[15.9] | 0.975<br>[24.8] | 0.446<br>[11.3] | 5/8<br>[20.0] | 0.179<br>[4.55] | 58909-1  | 60307-1 |
| 50   | 1.750<br>[44.5] | 0.905<br>[23.0] | 1.420<br>[36.1]  | 1.970<br>[50.0] | 2.600<br>[66.00] | 5/16<br>[M8] | 0.500<br>[15.0] | 5/16-18<br>[M8 x 1.25] | 1.889<br>[48.0] | 0.765<br>[19.4] | 1.250<br>[31.8] | 0.556<br>[14.1] | 7/8<br>[25.0] | 0.209<br>[5.31] | 58910-1  | 60308-1 |
| 63   | 2.011<br>[51.1] | 0.985<br>[25.0] | 1.520<br>[38.6]  | 2.360<br>[60.0] | 3.070<br>[78.00] | 5/16<br>[M8] | 0.500<br>[15.0] | 5/16-18<br>[M8 x 1.25] | 2.166<br>[55.0] | 0.830<br>[21.0] | 1.325<br>[33.7] | 0.580<br>[14.7] | 7/8<br>[25.0] | 0.250<br>[6.35] | 58911-1  | 60309-1 |

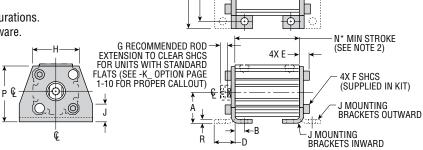
#### NOTES:

- 1) NUMBERS IN [ ] ARE IN mm FOR METRIC UNITS [CRx6].
- 2) \*MINIMUM STROKE REQUIRED FOR LEGS OF BOTH BRACKETS TO BE UNDER UNIT (SUBTRACT 0.250 [5.0] FROM P FOR MAGNETIC LINITS
- MAGNETIC UNITS)
  3) DESIGNATED
  CENTERLINE € IS
  CENTERLINE OF
  CYLINDER.

THRU HOLE

4X M SHCS

#### J MOUNT KIT


#### (Must be ordered separately)

Plated steel for use where height is critical, but room is available to sides of unit.

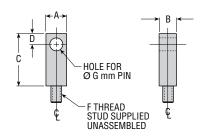
**NOTE:** Brackets may be mounted in different configurations. Kit includes 2 brackets and cylinder mounting hardware.

#### NOTES:

- 1) NUMBERS IN [ ] ARE IN mm FOR METRIC UNITS [CRx6].
- 2) \*MINIMUM STROKE REQUIRED FOR LEGS OF BOTH BRACKETS TO BE UNDER UNIT (SUBTRACT 0.250 [5.0] FROM P FOR MAGNETIC UNITS)
- 3) DESIGNATED CENTERLINE € IS CENTERLINE OF CYLINDER.



| BORE |                 |                 |                 |                 |                        |                 | DIMENS          | IONS            |                  |                 |              |                 |                 |                 | KIT NO.       | KIT NO.     |
|------|-----------------|-----------------|-----------------|-----------------|------------------------|-----------------|-----------------|-----------------|------------------|-----------------|--------------|-----------------|-----------------|-----------------|---------------|-------------|
| [mm] | Α               | В               | D               | E               | F                      | G               | Н               | J               | K                | L               | M            | N* MIN          | Р               | R               | IMPERIAL CRx3 | METRIC CRx6 |
| 12   | 0.830<br>[21.1] | 0.275<br>[7.0]  | 0.600<br>[15.3] | 0.295<br>[7.5]  | 10-24<br>[M5 x 0.8]    | 0.250<br>[5.0]  | 0.945<br>[24.0] | 0.390<br>[10.0] | 1.810<br>[46.0]  | 1.380<br>[35.1] | #10<br>[M5]  | 0.250<br>[5.0]  | 1.510<br>[38.4] | 0.105<br>[2.67] | 60310-1       | 60318-1     |
| 16   | 0.870<br>[22.0] | 0.275<br>[7.0]  | 0.610<br>[15.5] | 0.310<br>[7.9]  | 10-24<br>[M5 x 0.8]    | 0.250<br>[10.0] | 1.122<br>[28.5] | 0.450<br>[11.5] | 1.970<br>[50.0]  | 1.535<br>[39.0] | #10<br>[M5]  | 0.250<br>[5.0]  | 1.620<br>[41.2] | 0.120<br>[3.05] | 60311-1       | 60319-1     |
| 20   | 0.945<br>[24.0] | 0.315<br>[8.0]  | 0.710<br>[18.0] | 0.370<br>[9.4]  | 1/4-20<br>[M6 x 1.0]   | 0.375<br>[10.0] | 1.470<br>[37.4] | 0.450<br>[11.5] | 2.520<br>[64.0]  | 1.969<br>[50.0] | 1/4<br>[M6]  | 0.375<br>[10.0] | 1.750<br>[44.5] | 0.120<br>[3.05] | 60312-1       | 60320-1     |
| 25   | 1.005<br>[25.5] | 0.315<br>[8.0]  | 0.725<br>[18.5] | 0.390<br>[9.9]  | 1/4-20<br>[M6 x 1.0]   | 0.375<br>[10.0] | 1.581<br>[40.2] | 0.490<br>[12.5] | 2.600<br>[66.0]  | 2.047<br>[52.0] | 1/4<br>[M6]  | 0.375<br>[10.0] | 1.890<br>[48.0] | 0.135<br>[3.43] | 60313-1       | 60321-1     |
| 32   | 1.218<br>[31.0] | 0.355<br>[9.0]  | 0.834<br>[21.2] | 0.414<br>[10.5] | 1/4-20<br>[M6 x 1.0]   | 0.375<br>[10.0] | 1.873<br>[47.6] | 0.630<br>[16.0] | 2.950<br>[75.0]  | 2.362<br>[60.0] | 1/4<br>[M6]  | 0.375<br>[10.0] | 2.240<br>[57.0] | 0.164<br>[4.17] | 60314-1       | 60322-1     |
| 40   | 1.400<br>[35.6] | 0.355<br>[9.0]  | 0.885<br>[22.5] | 0.429<br>[10.9] | 1/4-20<br>[M6 x 1.0]   | 0.375<br>[10.0] | 2.190<br>[55.7] | 0.670<br>[17.0] | 3.310<br>[84.1]  | 2.677<br>[68.0] | 1/4<br>[M6]  | 0.500<br>[10.0] | 2.560<br>[65.0] | 0.179<br>[4.55] | 60315-1       | 60323-1     |
| 50   | 1.730<br>[44.0] | 0.492<br>[12.5] | 1.110<br>[28.2] | 0.531<br>[13.5] | 5/16-18<br>[M8 x 1.25] | 0.500<br>[15.0] | 2.577<br>[65.5] | 0.850<br>[21.5] | 3.940<br>[100.1] | 3.189<br>[81.0] | 5/16<br>[M8] | 0.625<br>[15.0] | 3.150<br>[80.0] | 0.209<br>[5.31] | 60316-1       | 60324-1     |
| 63   | 2.010<br>[51.1] | 0.512<br>[13.0] | 1.250<br>[31.8] | 0.570<br>[14.5] | 5/16-18<br>[M8 x 1.25] | 0.500<br>[15.0] | 3.055<br>[77.6] | 1.000<br>[25.5] | 4.530<br>[115.1] | 3.661<br>[93.0] | 5/16<br>[M8] | 0.750<br>[20.0] | 3.660<br>[93.0] | 0.250<br>[6.35] | 60317-1       | 60325-1     |

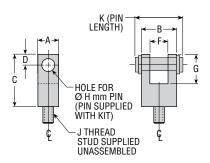

All dimensions are reference only unless specifically toleranced.



## **ACCESSORIES:** Series CRS Cylinders

#### **ROD EYE KIT**

| BORE  |        |                       | DIMI   | ENSIONS | 3                  |        | KIT: CRx3x | KIT: CRx6x |  |
|-------|--------|-----------------------|--------|---------|--------------------|--------|------------|------------|--|
| [mm]  | Α      | В                     | C D    |         | F                  | G      | IMPERIAL   | METRIC     |  |
| 12/16 | 0.438  | 0.250                 | 0.885  | 0.215   | 8-32               | 0.197  | 59069-1    | 60234-1    |  |
| 12/10 | [11.0] | [6.5]                 | [22.5] | [5.5]   | [M4 x 0.7]         | [5.0]  | 39009-1    |            |  |
| 20/25 | 0.500  | 0.500   0.375   1.065 |        | 0.255   | 1/4-28             | 0.236  | 59070-1    | 60235-1    |  |
| 20/23 | [12.7] | [9.5]                 | [27.0] | [6.5]   | [M6 x 1.0]         | [6.0]  | 39070-1    | 00233-1    |  |
| 32/40 | 0.625  | 0.500                 | 1.495  | 0.355   | 5/16-24            | 0.394  | 59071-1    | 60236-1    |  |
| 32/40 | [16.0] | [12.5]                | [38.0] | [9.0]   | [M8 x 1.25]        | [10.0] | 39071-1    | 00230-1    |  |
| 50/63 | 0.875  | 0.625                 | 1.610  | 0.430   | 3/8-24             | 0.472  | 59072-1    | 60237-1    |  |
| 30/03 | [22.2] | [16.0]  [41.0]  [11.  |        | [11.0]  | [M10 x 1.5] [12.0] |        | 39072-1    | 00237-1    |  |

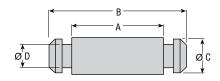



#### NOTES:

- 1) UNIT MUST BE ORDERED WITH STANDARD FEMALE THREADS
- 2) DESIGNATED CENTERLINE € IS CENTERLINE OF PART. ALL FEATURES CENTERED ON € UNLESS OTHERWISE NOTED.
- 3) STANDARD PLATING IS BRITE ZINC
- 4) NUMBERS IN [ ] ARE IN mm FOR METRIC UNITS [CRx6]

#### **ROD CLEVIS KIT**

| Ī     | BORE  |        |        | KIT: CRx3x | KIT: CRx6x |        |        |        |             |        |                      |         |
|-------|-------|--------|--------|------------|------------|--------|--------|--------|-------------|--------|----------------------|---------|
|       | [mm]  | Α      | В      | C          | D          | F      | G      | Н      | J           | K      | IMPERIAL             | METRIC  |
| ı     | 12/16 | 0.438  | 0.625  | 1.000      | 0.215      | 0.266  | 0.610  | 0.197  | 8-32        | 0.845  | 59073-1              | 60238-1 |
|       | 12/10 | [11.0] | [15.9] | [25.4]     | [5.5]      | [6.8]  | [15.5] | [5.0]  | [M4 x 0.7]  | [21.5] |                      | 00230-1 |
| I     | 20/25 | 0.500  | 0.750  | 1.255      | 0.255      | 0.391  | 0.738  | 0.236  | 1/4-28      | 0.965  | 1 59074-1            | 60239-1 |
|       | 20/23 | [12.7] | [19.0] | [32.0]     | [6.5]      | [9.9]  | [18.8] | [6.0]  | [M6 x 1.0]  | [24.5] | 3907 <del>4</del> -1 |         |
|       | 32/40 | 0.625  | 1.000  | 1.615      | 0.315      | 0.518  | 0.925  | 0.394  | 5/16-24     | 1.300  | 59075-1              | 60240-1 |
|       | 32/40 | [15.9] | [25.4] | [41.0]     | [8.0]      | [13.2] | [23.5] | [10.0] | [M8 x 1.25] | [33.0] | 39073-1              | 00240-1 |
|       | 50/63 | 0.875  | 1.250  | 1.815      | 0.435      | 0.645  | 1.165  | 0.472  | 3/8-24      | 1.575  | 59076-1              | 60241-1 |
| 50/63 | 30/03 | [22.2] | [31.8] | [46.1]     | [11.0]     | [16.4] | [29.6] | [12.0] | [M10 x 1.5] | [40.0] | J3070-1              | 00241-1 |

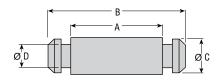



#### NOTES:

- 1) UNIT MUST BE ORDERED WITH STANDARD FEMALE THREADS
- 2) DESIGNATED CENTERLINE  $\P$  IS CENTERLINE OF PART. ALL FEATURES CENTERED ON  $\P$  UNLESS OTHERWISE NOTED.
- 3) STANDARD PLATING IS BRITE ZINC (PIN & CLEVIS)
- 4) NUMBERS IN [ ] ARE IN mm FOR METRIC UNITS [CRx6]

#### **ROD FULCRUM PIN KIT**

Replacement for Rod Clevis pin or for use with PHD Rod Eye. Pin is Brite Zinc plated. Retaining rings are supplied.




| BORE  |        | DIMEN      | KIT: CRx3x, CRx6x |       |                 |
|-------|--------|------------|-------------------|-------|-----------------|
| [mm]  | Α      | В          | ØC                | ØD    | IMPERIAL/METRIC |
| 12/16 | 0.665  | 0.845      | 0.197             | 0.125 | 60326-1         |
| 12/10 | [16.9] | [21.5]     | [5.0]             | [3.2] | 00320-1         |
| 20/25 | 0.785  | 0.965      | 0.236             | 0.156 | 60327-1         |
| 20/23 | [19.9] | [24.5]     | [6.0]             | [4.0] | 00327-1         |
| 32/40 | 1.045  | 1.300      | 0.394             | 0.274 | 60328-1         |
| 32/40 | [26.5] | [33.0]     | [10.0]            | [7.0] | 00320-1         |
| 50/63 | 1.295  | .295 1.575 |                   | 0.353 | 60200 1         |
|       | [32.9] | [40.0]     | [12.0]            | [9.0] | 60329-1         |

NOTE: Numbers in [ ] are in mm for metric units [CRx6].

#### CYLINDER FULCRUM PIN KIT

Replacement for base pivot pin or for use with PHD Cylinder Pivot. Pin is Brite Zinc plated. Retaining rings are supplied.

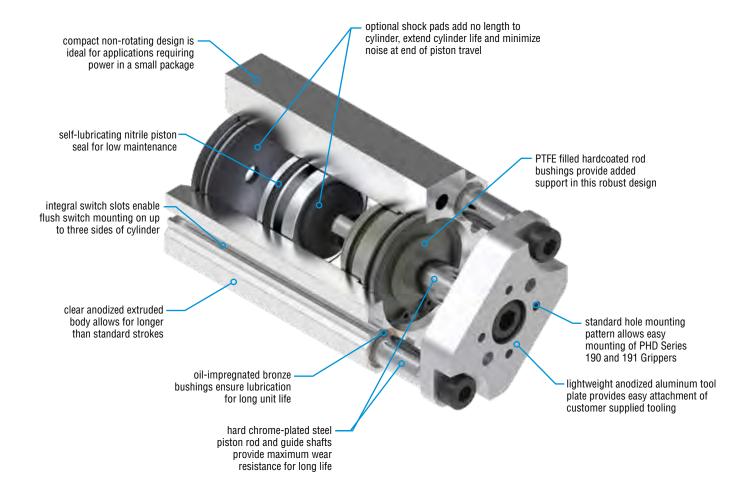


| BORE  |             | DIMEN  | SIONS  |       | KIT: CRx3x, CRx6x |  |
|-------|-------------|--------|--------|-------|-------------------|--|
| [mm]  | A           | В      | ØC     | ØD    | IMPERIAL/METRIC   |  |
| 12/16 | 1.120       | 1.300  | 0.197  | 0.125 | 60330-1           |  |
| 12/10 | [28.5]      | [33.0] | [5.0]  | [3.1] | 00330-1           |  |
| 20/25 | 1.550       | 1.730  | 0.236  | 0.156 | 60331-1           |  |
| 20/23 | [39.4]      | [44.0] | [6.0]  | [4.0] | 00331-1           |  |
| 32/40 | 1.240 1.490 |        | 0.394  | 0.274 | 60332-1           |  |
| 32/40 | [31.5]      | [37.9] | [10.0] | [7.0] | 00332-1           |  |
| 50/63 | 1.690       | 1.970  | 0.472  | 0.353 | 60333-1           |  |
|       | [42.9]      | [50.0] | [12.0] | [9.0] | 00333-1           |  |

**NOTE:** Numbers in [ ] are in mm for metric units [CRx6].

All dimensions are reference only unless specifically toleranced.




## **GUIDED PNEUMATIC COMPACT CYLINDER**

# **CTS**

#### **Major Benefits**

- Compact design for applications where space is limited.
- Hard chrome plated guide shafts for anti-rotation and increased side load capacity.
- Oil-impregnated bronze bushings for long cylinder life.
- · Multiple mounting options.
- · Easy mounting of other PHD components.
- · Up to six switch slots for flush switch mounting.







# **ORDERING DATA:** Series CTS Cylinders

#### TO ORDER SPECIFY:

Product, Series, Type, Design No., Mounting Style, Bore Size, Stroke, and Options.

#### **PRODUCT** C - Cylinder

### **TYPE**

- S Single Rod, Double Acting (standard) D - Double Rod, Double Acting
  - Double Rod units include tool plate on one end only.

#### **IMPERIAL STROKE (CTx2)** STANDARD STROKE LENGTHS

1/8" = Minimum stroke in 1/8" increments

| BORE<br>mm | MAXIMUM<br>STROKE (in) |
|------------|------------------------|
| 12         | 2-3/4                  |
| 16         | 2-3/4                  |
| 20         | 3-1/2                  |
| 25         | 3-1/2                  |
| 32         | 4                      |
| 40         | 4                      |
| 50         | 4-1/2                  |
| 63         | 6                      |
|            |                        |

#### METRIC STROKE (CTx6) STANDARD STROKE LENGTHS

5 mm = Minimum stroke in 5 mm increments

| 111 0 1 | iiii iiioi ciiioiita |
|---------|----------------------|
| BORE    | MAXIMUM              |
| mm      | STROKE (mm)          |
| 12      | 70                   |
| 16      | 70                   |
| 20      | 90                   |
| 25      | 90                   |
| 32      | 100                  |
| 40      | 100                  |
| 50      | 115                  |
| 63      | 150                  |
|         |                      |

MOUNTING STYLE

All units have 2 thru holes

4 places, 2 each end

Inward, 1 each end

U - Universal (Standard) Thread and C'bore

J - Foot Mounting Foot

K - Foot Mounting Foot Outward, 1 each end

#### **SERIES** - Compact Guide Rod

#### DESIGN NO. 2 - Imperial 6 - Metric

| E | 30RI<br>mm |      | E SIZE<br>AREA<br>mm² | AREA in² |
|---|------------|------|-----------------------|----------|
|   | 12         | 0.47 | 113                   | 0.175    |
|   | 16         | 0.63 | 201                   | 0.312    |
|   | 20         | 0.79 | 314                   | 0.487    |
|   | 25         | 0.98 | 490                   | 0.761    |
|   | 32         | 1.26 | 804                   | 1.247    |
|   | 40         | 1.57 | 1256                  | 1.948    |
|   | 50         | 1.97 | 1963                  | 3.043    |
|   | 63         | 2.48 | 3117                  | 4.832    |

#### **OPTIONS**

- BB Shock Pads in both directions (Option does not add any extra length)
- M Magnetic piston for use with PHD Series JC1 Switches. See Notes 2 and 4.
- F11 Extended Length Wrench Flats
- K\_ Extra Tool Plate Extension in 1/8" [5 mm] increments up to 1" [25 mm] maximum. Length code example: K1 = 1/8", K3 = 3/8", or K5 = 5 mm, K15 = 15 mm, etc.
- V1 Fluoroelastomer Seals
- WB Blank Tool Plate (shipped with tool plate unassembled)
- WR Rectangular Tool Plate (12-16 mm units only)
- WRB Blank Rectangular Tool Plate (12-16 mm units only)
  - (shipped with tool plate unassembled) Z1 - Corrosion-resistant, stainless steel rod and guide shafts, electroless nickel plated retaining rings, fasteners, and brackets (with J & K mounting)

Options may affect unit length. See dimensional pages and option information details.

#### **SERIES JC1 MAGNETIC SWITCHES**

NOTES:

1) See pages 27 and 28 for accessories.

PHD recommends the use of stainless steel or

3) Longer stroke lengths are available. Consult PHD.

4) See options page for switch ordering information.

de-magnetized fasteners on units with -M option.

| JC1 SWITCH | DESCRIPTION                       |
|------------|-----------------------------------|
| JC1SDN-5   | NPN DC Solid State, 5 meter cable |
| JC1SDP-5   | PNP DC Solid State, 5 meter cable |
| JC1SDN-K   | NPN DC Solid State, Quick Connect |
| JC1SDP-K   | PNP DC Solid State, Quick Connect |
| JC1RDU-5   | PNP or NPN DC Reed, 5 meter cable |
| JC1RDU-K   | PNP or NPN DC Reed, Quick Connect |
| JC1ADU-K   | AC Reed, Quick Connect            |

**NOTE:** See Switches and Sensors section for additional switch information and complete specification. Switches must be ordered separately.

#### CORDSETS FOR SERIES JC1 SWITCHES

| PART NO.    | DESCRIPTION                                          |  |  |  |  |  |  |
|-------------|------------------------------------------------------|--|--|--|--|--|--|
| 63549-02    | M8, 3 pin, Straight Female Connector, 2 meter cable  |  |  |  |  |  |  |
| 63549-05    | M8, 3 pin, Straight Female Connector, 5 meter cable  |  |  |  |  |  |  |
| 81284-1-010 | M12, 4 pin, Straight Female Connector, 2 meter cable |  |  |  |  |  |  |

**NOTE:** Cordsets are ordered separately.

#### **CAD & Sizing Assistance**

Use PHD's free online Product Sizing and CAD Configurator at phdinc.com/myphd



# **ENGINEERING DATA:** Series CTS Cylinders

| SPECIFICATIONS     | SERIES CTS                                                                              |  |  |  |  |
|--------------------|-----------------------------------------------------------------------------------------|--|--|--|--|
| OPERATING PRESSURE | 20 psi min to 150 psi max at zero load [1.4 bar min to 10 bar max] air                  |  |  |  |  |
| STROKE TOLERANCE   | ± 0.031 inch [± 0.8 mm] (See Shock Pad Usage)                                           |  |  |  |  |
| TEMPERATURE LIMITS | -20° to +180°F [-29° to +82°C]                                                          |  |  |  |  |
| VELOCITY           | 20 in/sec [0.5 m/sec] typical min, zero load at 100 psi [7 bar]                         |  |  |  |  |
| LIFE EXPECTANCY    | 30 million linear inches [762000 linear meters] min (-V1 & -Z1 options may reduce life) |  |  |  |  |
| LUBRICATION        | Pre-lubricated for use with non-lubricated or lubricated air                            |  |  |  |  |
| MAINTENANCE        | Field repairable                                                                        |  |  |  |  |

#### CYLINDER FORCE AND WEIGHT

| BORE SIZE |       | ROD<br>Diameter |       | ROD<br>DIRECTION | EFFE( |      | BASE<br>WEIGHT |      | ADDER PER 1"<br>[25 mm] OF STROKE |      |
|-----------|-------|-----------------|-------|------------------|-------|------|----------------|------|-----------------------------------|------|
| mm        | in    | in              | mm    | DITIECTION       | in²   | mm²  | lb             | kg   | lb                                | kg   |
| 12        | 0.472 | 0.250           | 6.35  | EXTEND           | 0.175 | 113  | 0.17           | 0.08 | 0.11                              | 0.05 |
| 12        | 0.472 | 0.230           | 0.33  | RETRACT          | 0.126 | 81   | 0.17           | 0.00 | 0.11                              |      |
| 16        | 0.630 | 0.250           | 6.35  | EXTEND           | 0.312 | 201  | 0.20           | 0.09 | 0.12                              | 0.05 |
| 10        | 0.030 | 0.230           | 0.33  | RETRACT          | 0.263 | 169  | 0.20           | 0.09 | 0.12                              |      |
| 20        | 0.787 | 0.375           | 9.53  | EXTEND           | 0.487 | 314  | 0.37           | 0.17 | 0.19                              | 0.09 |
| 20        | 0.767 | 0.373           | 9.55  | RETRACT          | 0.376 | 242  | 0.57           | 0.17 | 0.19                              | 0.09 |
| 25        | 0.984 | 0.375           | 9.53  | EXTEND           | 0.761 | 490  | 0.43           | 0.19 | 0.20                              | 0.09 |
| 25        | 0.904 | 0.575           | 9.55  | RETRACT          | 0.650 | 419  |                | 0.19 |                                   |      |
| 32        | 1.260 | 0.625           | 15.88 | EXTEND           | 1.247 | 804  | 0.72           | 0.33 | 0.31                              | 0.14 |
| 32        | 1.200 | 0.023           | 13.00 | RETRACT          | 0.940 | 606  | 0.72           | 0.55 | 0.51                              | 0.14 |
| 40        | 1.575 | 0.625           | 15.88 | EXTEND           | 1.948 | 1256 | 0.96           | 0.44 | 0.37                              | 0.17 |
| 40        | 1.575 | 0.023           | 15.00 | RETRACT          | 1.641 | 1058 | 0.90           | 0.44 | 0.37                              | 0.17 |
| 50        | 1.969 | 0.750           | 19.05 | EXTEND           | 3.043 | 1963 | 1.65           | 0.75 | 0.49                              | 0.22 |
| 30        | 1.909 | 0.730           | 19.00 | RETRACT          | 2.602 | 1678 | 1.05           | 0.75 | 0.49                              |      |
| 63        | 2.480 | 0.750           | 19.05 | EXTEND           | 4.832 | 3117 | 2.36           | 1.07 | 0.58                              | 0.26 |
| 03        | 2.400 | 0.730           | 19.00 | RETRACT          | 4.390 | 2832 | 2.30           |      |                                   | 0.20 |

**NOTE:** Use retract figures for calculating double rod cylinder forces in both directions.

#### **APPLICATION**

The PHD Series CTS Compact Guide Rod Cylinders are designed for use as compact non-rotating cylinders and as light duty slides where precise location is not required and side loading is minimal. On double rod units, rear rod increases stability of the tool plate. Rear rod thread not intended as a load attach point. Shock pads are intended for use where there is end-of-stroke impact with an attached load. For maximum cylinder life with attached load, PHD recommends the use of external stops or shock absorbers. See best application practices on page 29.

Proper application of CTS Cylinders in horizontal applications is dependent upon travel and attached load. In addition, where there is end-of-stroke impact with an attached load, cylinder speed must be considered. Refer to page 21.

Proper application of CTS Cylinders in vertical applications is dependent upon both attached load and cylinder speed. Refer to page 22.

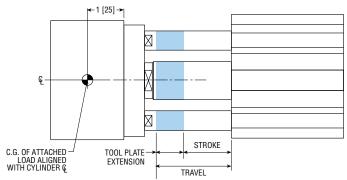
| CYLINDER FOR                                                        | CYLINDER FORCE CALCULATIONS |                           |  |  |  |  |  |  |  |
|---------------------------------------------------------------------|-----------------------------|---------------------------|--|--|--|--|--|--|--|
|                                                                     | Imperial<br>F = P x A       | Metric<br>F = 0.1 x P x A |  |  |  |  |  |  |  |
| F = Cylinder Force                                                  | lbs                         | N                         |  |  |  |  |  |  |  |
| P = Operating Pressure<br>A = Effective Area<br>(Extend or Retract) | psi<br>in²                  | bar<br>mm²                |  |  |  |  |  |  |  |

#### **SHOCK PAD USAGE**

Optional shock pads are recommended for applications where the piston contacts the bushing and plug ends with an attached load. The use of shock pads reduces noise and provides maximum cylinder life in these applications. Shock pads are not required for applications where external stops prevent end-of-stroke impact or where end impact occurs without an attached load. See best application practices on page 29. Stroke tolerance changes to  $\pm 0.050~[\pm 1.3~\text{mm}]$  with -BB option.



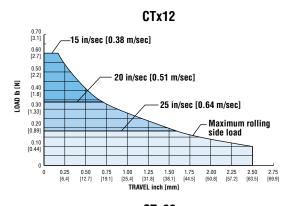
#### HORIZONTAL APPLICATIONS

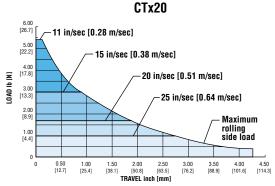

Proper application of CTS Cylinders in horizontal applications is dependent upon travel and attached load. In addition, where there is end-of-stroke impact with an attached load, cylinder speed must be considered.

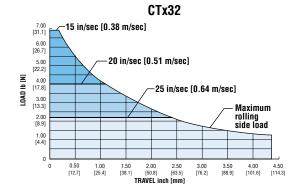
#### ATTACHED LOAD WITHOUT END OF STROKE IMPACT

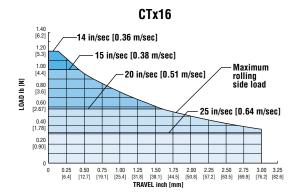
Use the charts below to determine the Maximum Rolling Side Load for a given bore size and travel. Optimum performance will be achieved with positive external stops aligned with the cylinder centerline.

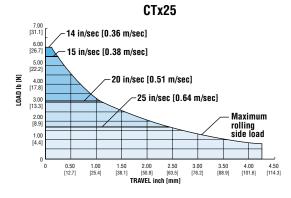
#### ATTACHED LOAD WITH END OF STROKE IMPACT

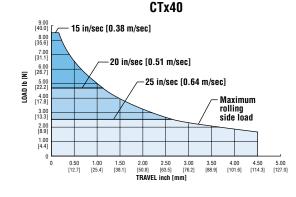

Use the charts below to determine the Maximum Rolling Side Load and speed for a given bore size and travel. Optional shock pads are required for end-of-stroke impact with attached load.





#### NOTES:


- 1) HORIZONTAL SIDE LOAD PERFORMANCE DATA IS BASED UPON
  - A) THE CENTER OF GRAVITY (C.G.) OF THE ATTACHED LOAD LOCATED AS SHOWN ABOVE. LOCATING THE C.G. BEYOND THE STATED DISTANCE MAY DECREASE THE LIFE OF THE UNIT.
  - B) A STANDARD UNIT. USE OF FLUOROELASTOMER SEALS OR THE -Z1
    OPTION MAY DECREASE THE SIDE LOADING CAPABILITY OF THE UNIT.
- 2) SPEEDS ARE BASED ON END-OF-STROKE IMPACT CAPABILITY OF UNITS WITH OPTIONAL SHOCK PADS.

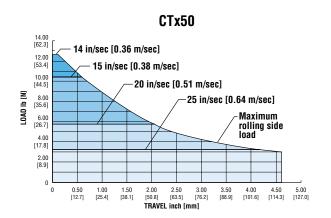

#### **MAXIMUM HORIZONTAL LOAD CAPACITY & SPEED**

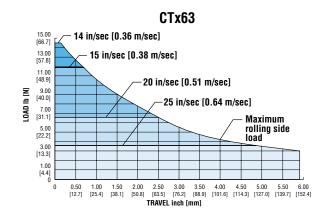











#### HORIZONTAL APPLICATIONS

#### **MAXIMUM HORIZONTAL LOAD CAPACITY & SPEED**



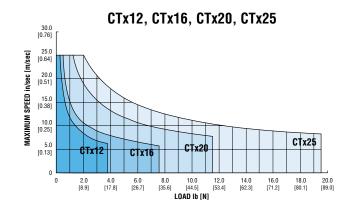


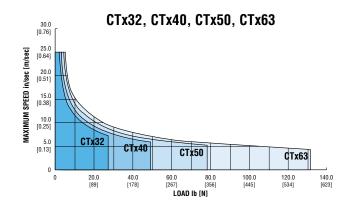
#### VERTICAL APPLICATIONS

Proper application of CTS Cylinders in vertical applications is dependent upon both attached load and cylinder speed.

#### ATTACHED LOAD WITHOUT END OF STROKE IMPACT

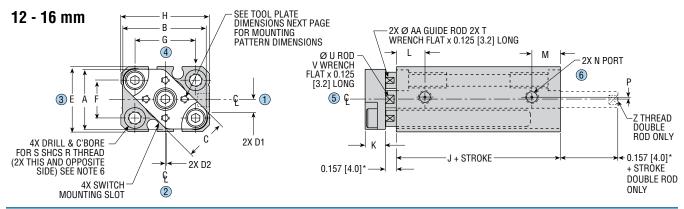
See cylinder force calculation on page 20. Optimum performance will be achieved with positive external stops aligned with the cylinder centerline.

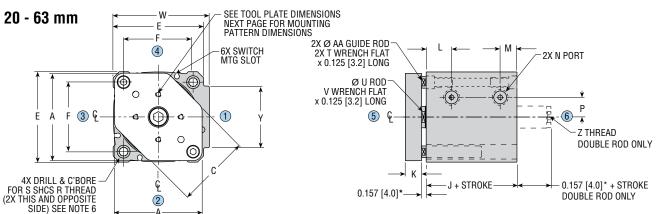

#### ATTACHED LOAD WITH END OF STROKE IMPACT


Use the charts below to determine the maximum speed for a given load. Optional shock pads are required for end-of-stroke impact with attached load.

#### NOTES:

- 1) VERTICAL PERFORMANCE DATA IS BASED UPON:
  - A) THE CENTER OF GRAVITY (C.G.) OF THE ATTACHED LOAD IN LINE WITH THE CYLINDER CENTERLINE. LOCATING THE C.G. OFF OF THE CYLINDER CENTERLINE MAY RESULT IN DECREASED CYLINDER LIFE.
  - B) A STANDARD UNIT. USE OF FLUOROELASTOMER SEALS OR THE -Z1 OPTION MAY DECREASE THE LIFE OF THE UNIT.
- 2) SPEEDS ARE BASED ON END OF STROKE IMPACT CAPABILITY OF UNITS WITH OPTIONAL SHOCK PADS


# VERTICAL APPLICATION WITH END OF STROKE IMPACT MAXIMUM SPEED & LOAD







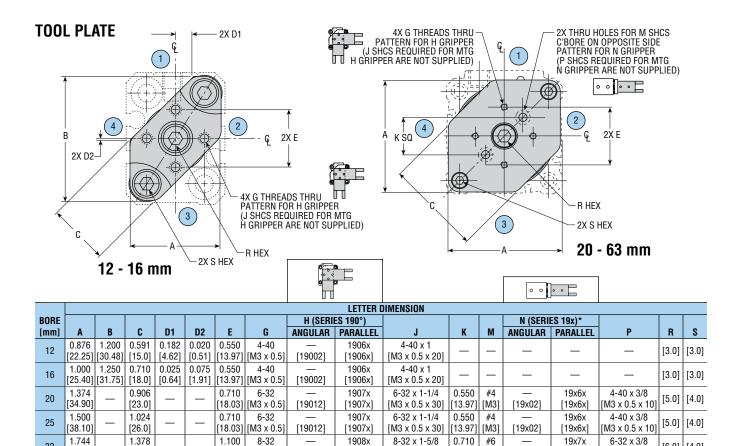

# **DIMENSIONS:** Series CTS Cylinders





| BORE |                  |                  |               |                 |                 |                 |                  |                 | LETTER D        | IMENSION         |                 |                 |                 |                                |                 |                                       |
|------|------------------|------------------|---------------|-----------------|-----------------|-----------------|------------------|-----------------|-----------------|------------------|-----------------|-----------------|-----------------|--------------------------------|-----------------|---------------------------------------|
| [mm] | Α                | В                | C             | D1              | D2              | E               | F                | G               | Н               | J                | K               | L               | M               | N                              | P               | R THREAD                              |
| 12   | 0.876<br>[22.25] | 1.200<br>[30.48] | 0.591<br>[15] | 0.182<br>[4.62] | 0.020<br>[0.51] | 0.944<br>[24.0] | 0.550<br>[13.97] | 0.866<br>[22.0] | 1.260<br>[32.0] | 1.380<br>[35.05] | 0.295<br>[7.5]  | 0.415<br>[10.5] | 0.415<br>[10.5] | 10-32 x 0.15<br>[M5 x 0.8 x 4] | 0.032<br>[0.8]  | 10-24 x 0.550<br>[M5 x 0.8 x 14.5]    |
| 16   | 1.000<br>[25.40] | 1.250<br>[31.75] | 0.710<br>[18] | 0.025<br>[0.64] | 0.075<br>[1.91] | 1.91<br>[28.0]  | 0.710<br>[18.03] | 0.946<br>[24.0] | 1.340<br>[34.0] | 1.380<br>[35.05] | 0.295<br>[7.5]  | 0.415<br>[10.5] | 0.415<br>[10.5] | 10-32 x 0.15<br>[M5 x 0.8 x 4] | 0.098<br>[2.5]  | 10-24 x 0.550<br>[M5 x 0.8 x 14.5]    |
| 20   | 1.374<br>[34.90] | _                | 0.906<br>[23] | _               | _               | 1.476<br>[37.5] | 1.000<br>[25.4]  | _               | _               | 1.615<br>[41.02] | 0.394<br>[10.0] | 0.670<br>[17.0] | 0.415<br>[10.5] | 10-32 x 0.15<br>[M5 x 0.8 x 4] | 0.207<br>[5.3]  | 1/4-20 x 0.875<br>[M6 x 1.0 x 22.5]   |
| 25   | 1.500<br>[38.10] | _                | 1.024<br>[26] | _               | _               | 1.576<br>[40.0] | 1.100<br>[28.0]  | _               | _               | 1.615<br>[41.02] | 0.394<br>[10.0] | 0.670<br>[17.0] | 0.398<br>[10.1] | 10-32 x 0.15<br>[M5 x 0.8 x 4] | 0.236<br>[6.0]  | 1/4-20 x 0.875<br>[M6 x 1.0 x 22.5]   |
| 32   | 1.744<br>[44.30] | _                | 1.378<br>[35] | _               | _               | 1.870<br>[47.5] | 1.339<br>[34.0]  | _               | _               | 1.790<br>[45.47] | 0.394<br>[10.0] | 0.710<br>[18.0] | 0.450<br>[11.4] | 1/8 NPT<br>[1/8 BSP]           | 0.324<br>[8.2]  | 1/4-20 x 0.875<br>[M6 x 1.0 x 22.5]   |
| 40   | 2.000<br>[50.80] | _                | 1.650<br>[42] | _               | _               | 2.205<br>[56.0] | 1.574<br>[40.0]  | _               | _               | 1.790<br>[45.47] | 0.394<br>[10.0] | 0.710<br>[18.0] | 0.450<br>[11.4] | 1/8 NPT<br>[1/8 BSP]           | 0.364<br>[9.3]  | 1/4-20 x 0.875<br>[M6 x 1.0 x 22.5]   |
| 50   | 2.500<br>[63.50] | _                | 2.086<br>[53] | _               | _               | 2.598<br>[66.0] | 1.968<br>[50.0]  | _               | _               | 1.970<br>[50.04] | 0.551<br>[14.0] | 0.790<br>[20.1] | 0.535<br>[13.6] | 1/8 NPT<br>[1/8 BSP]           | 0.476<br>[12.1] | 5/16-18 x 0.900<br>[M8 x 1.25 x 22.5] |
| 63   | 2.974<br>[75.54] | _                | 2.560<br>[65] |                 | _               | 3.070<br>[78.0] | 2.362<br>[60.0]  |                 | _               | 2.090<br>[53.09] | 0.551<br>[14.0] | 0.865<br>[22.0] | 0.570<br>[14.5] | 1/4 NPT<br>[1/4 BSP]           | 0.670<br>[17.0] | 5/16-18 x 0.900<br>[M8 x 1.25 x 22.5] |

| BORE |            |                |                 | LET1           | TER DIME | NSION  |                                |                |
|------|------------|----------------|-----------------|----------------|----------|--------|--------------------------------|----------------|
| [mm] | S          | T              | U               | V              | W        | Υ      | Z THREAD                       | AA             |
| 12   | #6<br>[M4] | 0.219<br>[5.6] | 0.250<br>[6.35] | 0.219<br>[5.6] | _        | _      | 6-32 x 0.210<br>[M4 x 0.7 x 7] | 0.236<br>[6.0] |
| 16   | #6<br>[M4] | 0.219<br>[5.6] | 0.250<br>[6.35] | 0.219<br>[5.6] | _        | _      | 6-32 x 0.210<br>[M4 x 0.7 x 7] | 0.236<br>[6.0] |
| 20   | #10        | 0.250          | 0.375           | 0.312          | 1.576    | 0.788  | 10-32 x 0.285                  | 0.314          |
|      | [M5]       | [6.4]          | [9.53]          | [7.9]          | [40.0]   | [20.0] | [M5 x 0.8 x 7]                 | [8.0]          |
| 25   | #10        | 0.250          | 0.375           | 0.312          | 1.746    | 1.000  | 10-32 x 0.285                  | 0.314          |
|      | [M5]       | [6.4]          | [9.53]          | [7.9]          | [44.4]   | [25.4] | [M5 x 0.8 x 7]                 | [8.0]          |
| 32   | #10        | 0.250          | 0.625           | 0.500          | 2.037    | 1.340  | 1/4-28 x 0.375                 | 0.314          |
|      | [M5]       | [6.4]          | [15.88]         | [12.7]         | [52.0]   | [34.0] | [M6 x 1.0 x 9]                 | [8.0]          |
| 40   | #10        | 0.250          | 0.625           | 0.500          | 2.363    | 1.420  | 1/4-28 x 0.375                 | 0.314          |
|      | [M5]       | [6.4]          | [15.88]         | [12.7]         | [60.0]   | [36.0] | [M6 x 1.0 x 9]                 | [8.0]          |
| 50   | 1/4        | 0.312          | 0.750           | 0.625          | 2.795    | 1.600  | 5/16-24 x 0.312                | 0.394          |
|      | [M6]       | [7.9]          | [19.05]         | [15.9]         | [71.0]   | [40.6] | [M8 x 1.25 x 8]                | [10.0]         |
| 63   | 1/4        | 0.312          | 0.750           | 0.625          | 3.266    | 2.094  | 5/16-24 x 0.312                | 0.394          |
|      | [M6]       | [7.9]          | [19.05]         | [15.9]         | [83.0]   | [53.2] | [M8 x 1.25 x 8]                | [10.0]         |


- 1) DIMENSION SHOWN IN [ ] ARE IN mm FOR METRIC UNITS [CTx6]. 2) DESIGNATED CENTERLINE  $\P$  IS CENTERLINE OF CYLINDER BORE.
- 3) UNLESS OTHERWISE DIMENSIONED, MOUNTING HOLE PATTERNS AND OTHER FEATURES ARE CENTERED ON DESIGNATED CYLINDER CENTERLINE.
- 4) 1/8" [5 mm] MINIMUM STROKE REQUIRED
- 5) \*SEE J & K MOUNTING DIMENSIONS FOR STANDARD EXTENSION WITH THOSE OPTIONS.
- 6) PHD RECOMMENDS THE USE OF STAINLESS STEEL OR DE-MAGNETIZED FASTENERS ON UNITS WITH THE -M OPTION.

### **CAD & Sizing Assistance**

Use PHD's free online Product Sizing and CAD Configurator at phdinc.com/myphd



### **DIMENSIONS:** Series CTS Cylinders



# 63

32

40

50

44.301

2.000

50.80]

2.500

[63.5]

2.974

75.54]

1) NUMBERS IN [ ] ARE IN mm FOR METRIC UNITS [CTx6].

[35.0]

1.650

[42.0]

2.086

[53.0]

2.560

[65.0]

2) \*IMPERIAL GRIPPERS MOUNT TO CTx2 ONLY. METRIC GRIPPERS MOUNT TO CTx6 ONLY.

27.941

1.100

27.94]

1.535

1 535

[M4 x 0.7]

8-32

M4 x 0.7

10-24

10-24

[38.99] [M5 x 0.8]

[38.99]|[M5 x 0.8]

- 3) DESIGNATED CENTERLINE € IS CENTERLINE OF CYLINDER BORE
- 4) UNLESS OTHERWISE DIMENSIONED, MOUNTING HOLE PATTERNS AND OTHER FEATURES ARE CENTERLINE ON DESIGNATED CYLINDER CENTERLINE.

[19022]

[19022

[19032]

[19032]

[1908x]

1908x

[1908x]

1909x

[1909x]

1909x

[1909x]

[M4 x 0.7 x 40]

8-32 x 1-5/8

[M4 x 0.7 x 40]

10-24 x 2-1/4

[M5 x 0.8 x 55]

10-24 x 2-1/4

[M5 x 0.8 x 55]

[18.03]

0.710

[18.03] [M3]

1.100

1 535 #10

[27.94] [M4]

[38.99] [M5]

[M3]

#6

#8

[19x12]

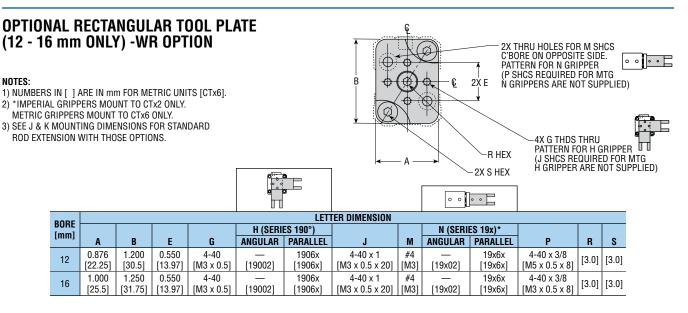
[19x12]

[19x22]

[19x32]

[19x7x]

19x7x


[19x7x]

19x8x

[19x8x]

19x9x

[19x9x]





[6.0] [4.0]

[8.0] [5.0]

[8.0] [5.0]

[4.0] [6.0]

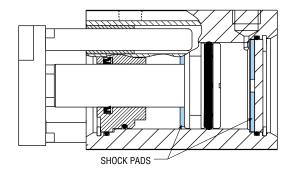
[M3 x 0.5 x 8]

6-32 x 3/8

[M3 x 0.5 x 8]

8-32 x 5/8

M4 x 0.7 x 12]


10-24 x 3/4

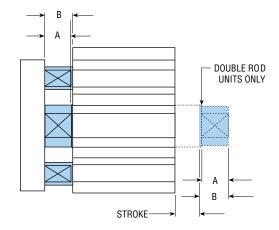
[M5 x 0.8 x 12]



# SHOCK PADS ON EXTENSION AND RETRACTION

Shock pads eliminate metal-to-metal contact and minimize piston impact. Shock pads are recommended for applications where the piston contacts the head and/or cap (with attached loads). The use of shock pads reduces noise and provides maximum cylinder life in these applications.






#### **EXTENDED LENGTH WRENCH FLATS**

The design of a compact guide rod cylinder requires the length to be as short as possible. The standard wrench flat length is 0.125" [3 mm]. The option -F11 provides wrench flats which allow standard wrench access. On double rod units, rear rod also receives extended flats with option -F11.

| BORE<br>[mm] |       | A EXTENDED ROD & GUIDE SHAFT WRENCH FLATS |       |       |  |  |
|--------------|-------|-------------------------------------------|-------|-------|--|--|
| 12/16        | 0.200 | [5.08]                                    | 0.250 | [6.5] |  |  |
| 20/25        | 0.200 | [5.08]                                    | 0.250 | [6.5] |  |  |
| 32/40        | 0.315 | [8.00]                                    | 0.344 | [9.0] |  |  |
| 50/63        | 0.315 | [8.00]                                    | 0.344 | [9.0] |  |  |

Numbers in [ ] are in mm for metric units [CTx6].





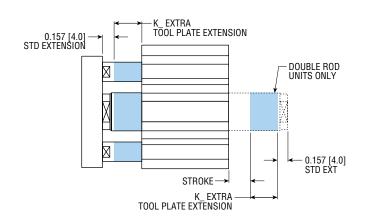
#### **EXTRA TOOL PLATE EXTENSION**

Extra rod extension can be achieved by specifying the option -K followed by the length code.

Length code example (for imperial CTx2 units)

K1 = 1/8" of extra tool plate extension

K3 = 3/8", etc.

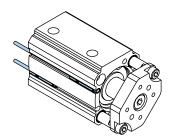

Length code example (for metric CTx6 units)

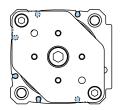
K5 = 5 mm of extra tool plate extension

K15 = 15 mm, etc.

0.157" [4 mm] of tool plate extension is standard. Available in 1/8" [5 mm] increments only. Maximum extension is 1" [25 mm].

**NOTE:** On double rod units, rear rod receives same extension as tool plate (tool plate on front end only).






# MAGNETIC PISTON FOR PHD SERIES JC1 SWITCHES

This option equips the cylinder with a magnetic band on the piston for use with PHD Series JC1 Switches. These switches mount easily into the integral slots in the body and are locked into place with a setscrew. Hand tighten the setscrew until the switch is securely retained. Do not overtighten. PHD recommends the use of stainless steel or de-magnetized fasteners when mounting Series CTx Cylinders equipped with the -M option. The design of a compact guide rod cylinder requires the length to be as short as possible. Installation of switches on units with J or K mounts will require temporary removal of the rear bracket prior to mounting the cylinder.





#### **SERIES JC1 MAGNETIC SWITCHES**

| JC1 SWITCH | DESCRIPTION                       |
|------------|-----------------------------------|
| JC1SDN-5   | NPN DC Solid State, 5 meter cable |
| JC1SDP-5   | PNP DC Solid State, 5 meter cable |
| JC1SDN-K   | NPN DC Solid State, Quick Connect |
| JC1SDP-K   | PNP DC Solid State, Quick Connect |
| JC1RDU-5   | PNP or NPN DC Reed, 5 meter cable |
| JC1RDU-K   | PNP or NPN DC Reed, Quick Connect |
| JC1ADU-K   | AC Reed, Quick Connect            |

**NOTE:** See Switches and Sensors section for additional switch information and complete specification. Switches must be ordered separately.

#### **CORDSETS FOR SERIES JC1 SWITCHES**

| PART NO.    | DESCRIPTION                                          |
|-------------|------------------------------------------------------|
| 63549-02    | M8, 3 pin, Straight Female Connector, 2 meter cable  |
| 63549-05    | M8, 3 pin, Straight Female Connector, 5 meter cable  |
| 81284-1-010 | M12, 4 pin, Straight Female Connector, 2 meter cable |

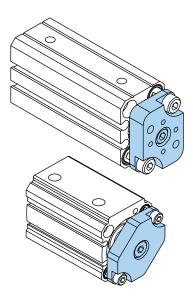
**NOTE:** Cordsets are ordered separately.





# RECTANGULAR TOOL PLATE (Available on Sizes 12 & 16 Only)

With this option, available only on the 12-16 mm cylinders, the unit is assembled with a rectangular tool plate. This provides an additional mounting orientation for Series 190 and 191 Grippers. This option with J or K mounting affects tool plate extension. See next page.




# BLANK TOOL PLATE (Sizes 12 through 63)



# BLANK RECTANGULAR TOOL PLATE (Available on Sizes 12 & 16 Only)

With these options, PHD provides a tool plate without mounting threads and counterbores. The tool plate is supplied unassembled for easy modification by the customer. Assembly and torque specifications are furnished with each unit. When assembling the unit, a threadlocking adhesive is required on tool plate mounting screws. This option with J or K mounting affects tool plate extension. See next page.



**NOTE:** Blank tool plates are shipped unassembled.



#### FLUOROELASTOMER SEALS

Fluoroelastomer seals are compatible with certain fluids which degrade standard Nitrile seals. Seal compatibility should be checked with the fluid manufacturer for correct application. Consult PHD for high temperature use.



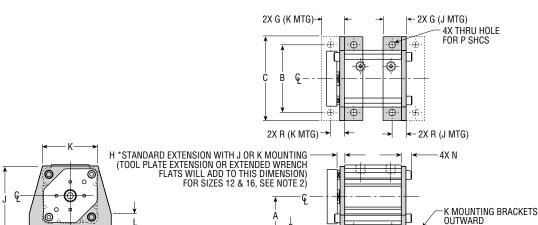
#### **CORROSION RESISTANT**

Electroless nickel plating is provided on the retaining rings, tool plate mounting screws, "J" and "K" brackets, and bracket mounting screws. Stainless steel rod and guideshafts are also supplied. This option may reduce unit life.



# **MOUNTINGS:** Series CTS Cylinders

#### J MOUNTS


J mounting provides foot brackets (with mounting feet under the cylinder) with minimal distance between the cylinder and mounting surface. This mounting comes preassembled by PHD with proper tool plate extension.

**NOTE:** Double rods will also receive H standard extension.

#### **K MOUNTS**

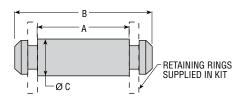
K mounting provides foot brackets (with mounting feet extended outward from the cylinder.) Mounting is simplified with mounting holes away from the body. This mounting comes preassembled by PHD with proper tool plate extension.

**NOTE:** Double rods will also receive H standard extension.



| BORE |        |        |         |        | LI     | ETTER D | IMENSIO | N      |        |        |      |        |
|------|--------|--------|---------|--------|--------|---------|---------|--------|--------|--------|------|--------|
| [mm] | A      | В      | C       | G      | Н      | J       | K       | L      | M      | N      | P    | R      |
| 12   | 0.830  | 1.380  | 1.810   | 0.600  | 0.282  | 1.510   | 0.945   | 0.390  | 0.105  | 0.295  | #10  | 0.380  |
|      | [21.1] | [35.1] | [46.0]  | [15.2] | [9.0]  | [38.4]  | [24.0]  | [9.9]  | [2.67] | [7.5]  | [M5] | [9.7]  |
| 16   | 0.870  | 1.535  | 1.970   | 0.610  | 0.282  | 1.620   | 1.122   | 0.450  | 0.120  | 0.310  | #10  | 0.395  |
|      | [22.1] | [39.0] | [50.0]  | [15.5] | [9.0]  | [41.2]  | [28.5]  | [11.4] | [3.05] | [7.9]  | [M5] | [10.0] |
| 20   | 0.945  | 1.969  | 2.520   | 0.710  | 0.282  | 1.750   | 1.470   | 0.450  | 0.120  | 0.370  | 1/4  | 0.435  |
|      | [24.0] | [50.0] | [64.0]  | [18.0] | [9.0]  | [44.5]  | [37.4]  | [11.4] | [3.05] | [9.4]  | [M6] | [11.1] |
| 25   | 1.005  | 2.047  | 2.600   | 0.725  | 0.282  | 1.890   | 1.581   | 0.490  | 0.135  | 0.390  | 1/4  | 0.450  |
|      | [25.5] | [52.0] | [66.0]  | [18.4] | [9.0]  | [48.0]  | [40.2]  | [12.5] | [3.43] | [9.9]  | [M6] | [11.4] |
| 32   | 1.221  | 2.362  | 2.950   | 0.834  | 0.282  | 2.240   | 1.873   | 0.630  | 0.179  | 0.414  | 1/4  | 0.519  |
|      | [31.0] | [60.0] | [74.9]  | [21.2] | [9.0]  | [57.0]  | [47.6]  | [16.0] | [4.55] | [10.5] | [M6] | [13.2] |
| 40   | 1.400  | 2.677  | 3.310   | 0.885  | 0.282  | 2.560   | 2.190   | 0.670  | 0.179  | 0.429  | 1/4  | 0.534  |
|      | [35.6] | [68.0] | [84.1]  | [22.5] | [9.0]  | [65.0]  | [55.7]  | [17.0] | [4.55] | [10.9] | [M6] | [13.6] |
| 50   | 1.730  | 3.189  | 3.940   | 1.110  | 0.407  | 3.150   | 2.577   | 0.850  | 0.199  | 0.531  | 5/16 | 0.699  |
|      | [44.0] | [81.0] | [100.1] | [28.2] | [11.0] | [80.0]  | [65.5]  | [21.6] | [5.05] | [13.5] | [M8] | [17.8] |
| 63   | 2.010  | 3.661  | 4.530   | 1.250  | 0.407  | 3.660   | 3.055   | 1.000  | 0.250  | 0.570  | 5/16 | 0.760  |
|      | [51.1] | [93.0] | [115.1] | [31.8] | [11.0] | [93.0]  | [77.6]  | [25.4] | [6.35] | [14.5] | [M8] | [19.3] |

#### NOTES:


J MOUNTING BRACKETS

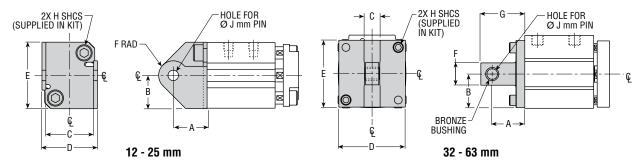
- 1) NUMBERS IN [ ] ARE IN mm FOR METRIC UNITS [CTx6].
- 2) \*STANDARD ROD EXTENSION ON SIZE 12 & 16 UNITS WITH J OR K MOUNTS AND -WR OR -WRB OPTION IS 0.407 [10].
- 3) INSTALLATION OF SWITCHES ON UNITS WITH J OR K MOUNTS WILL REQUIRE TEMPORARY REMOVAL OF THE REAR BRACKET PRIOR TO THE MOUNTING CYLINDER.
- 4) DESIGNATED CENTERLINE  $\P$  IS CENTERLINE OF CYLINDER.

# **ACCESSORIES:** Series CTS Cylinders

#### CYLINDER FULCRUM PIN KIT

Cylinder Fulcrum Pin Kit replacement for base pivot or for use with PHD cylinder pivot. Pin is Brite Zinc plated. Retaining rings supplied.




| BORE  | DI     | MENSIO | NS     | KIT: CTx2x, CTx6x |
|-------|--------|--------|--------|-------------------|
| [mm]  | Α      | В      | ØC     | IMPERIAL/METRIC   |
| 12/16 | 1.120  | 1.300  | 0.197  | 60330-1           |
| 12/10 | [28.5] | [33.0] | [5.0]  | 00330-1           |
| 20/25 | 1.550  | 1.730  | 0.236  | 60331-1           |
| 20/23 | [39.4] | [44.0] | [6.0]  | 00331-1           |
| 32/40 | 1.240  | 1.490  | 0.394  | 60332-1           |
| 32/40 | [31.5] | [37.9] | [10.0] | 00332-1           |
| 50/63 | 1.690  | 1.970  | 0.472  | 60333-1           |
| 30/03 | [42.9] | [50.0] | [12.0] | 00333-1           |
| NII.  | r 1 .  |        | f      | ''I. [OT 0]       |

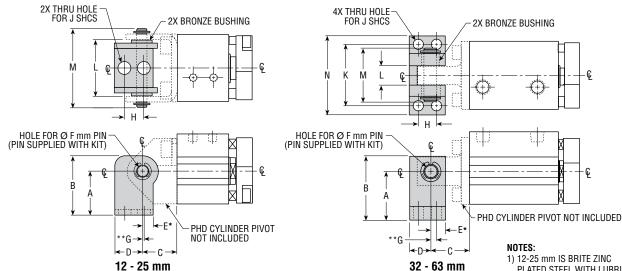
Numbers in [ ] are in mm for metric units [CTx6].



## **ACCESSORIES:** Series CTS Cylinders

#### **CYLINDER PIVOT KIT**




| BORE |        |        |         |        | DIMENSIC | ONS    |        |             |        | KIT NO.       | KIT NO.     |  |
|------|--------|--------|---------|--------|----------|--------|--------|-------------|--------|---------------|-------------|--|
| [mm] | Α      | В      | C       | D      | E        | F      | G      | Н           | J      | IMPERIAL CTx2 | METRIC CTx6 |  |
| 12   | 0.650  | 0.638  | 0.905   | 1.064  | 1.276    | 0.281  | _      | 10-24       | 0.197  | 60278-1       | 60286-1     |  |
|      | [16.5] | [16.2] | [23.00] | [27.0] | [32.9]   | [7.1]  |        | [M5 x 0.8]  | [5.0]  |               |             |  |
| 16   | 0.650  | 0.678  | 0.905   | 1.064  | 1.356    | 0.281  | _      | 10-24       | 0.197  | 60279-1       | 60287-1     |  |
| 10   | [16.5] | [17.2] | [23.00] | [27.0] | [34.9]   | [7.1]  |        | [M5 x 0.8]  | [5.0]  | 00273 1       | 00207-1     |  |
| 20   | 0.790  | 0.750  | 1.250   | 1.500  | 1.500    | 0.355  |        | 1/4-20      | 0.236  | 60280-1       | 60288-1     |  |
| 20   | [20.1] | [19.1] | [31.75] | [38.1] | [38.1]   | [9.0]  | _      | [M6 x 1.0]  | [6.0]  | 00200-1       |             |  |
| 25   | 0.790  | 0.800  | 1.250   | 1.500  | 1.600    | 0.355  |        | 1/4-20      | 0.236  | 60281-1       | 60289-1     |  |
| 23   | [20.1] | [20.3] | [31.75] | [38.1] | [40.6]   | [9.0]  |        | [M6 x 1.0]  | [6.0]  | 00201-1       |             |  |
| 32   | 1.065  | 0.935  | 0.490   | 1.870  | 1.870    | 0.820  | 1.475  | 1/4-20      | 0.394  | 60282-1       | 60290-1     |  |
| 32   | [27.0] | [23.8] | [12.45] | [47.5] | [47.5]   | [21.0] | [37.5] | [M6 x 1.0]  | [10.0] | 00202-1       | 00290-1     |  |
| 40   | 1.065  | 1.105  | 0.490   | 2.210  | 2.210    | 0.820  | 1.475  | 1/4-20      | 0.394  | 60283-1       | 60291-1     |  |
| 40   | [27.0] | [28.1] | [12.45] | [56.1] | [56.1]   | [21.0] | [37.5] | [M6 x 1.0]  | [10.0] | 00203-1       | 00291-1     |  |
| 50   | 1.460  | 1.300  | 0.600   | 2.600  | 2.600    | 1.000  | 1.970  | 5/16-18     | 0.472  | 60284-1       | 60292-1     |  |
| 50   | [37.1] | [33.0] | [15.24] | [66.0] | [66.0]   | [25.4] | [50.0] | [M8 x 1.25] | [12.0] | 00204-1       | 00292-1     |  |
| 63   | 1.460  | 1.500  | 0.600   | 3.000  | 3.000    | 1.000  | 1.970  | 5/16-18     | 0.472  | 60285-1       | 60293-1     |  |
| 03   | [37.1] | [38.1] | [15.24] | [76.2] | [76.2]   | [25.4] | [50.0] | [M8 x 1.25] | [12.0] | 00200-1       |             |  |

Numbers in [ ] are in mm for metric units [CTx6].

#### NOTES:

- 1) 12-25 mm IS BRITE ZINC PLATED STEEL
- 2) 32-63 mm IS ANODIZED ALUMINUM WITH LUBRICATED BRONZE BUSHINGS
- 3) FULCRUM PIN NOT INCLUDED (SEE "FULCRUM PIN KITS" TO PURCHASE)
- 4) DESIGNATED CENTERLINE € IS CENTERLINE OF CYLINDER
- 5) UNLESS OTHERWISE DIMENSIONED, FEATURES ARE CENTERED ON CYLINDER CENTERLINE

#### **BASE PIVOT KIT**

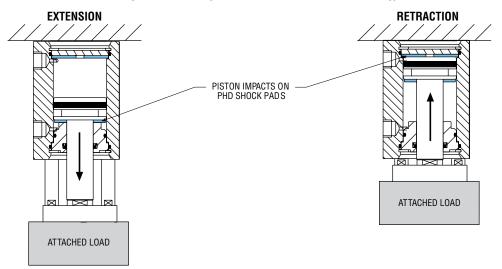


| BORE  |                 |                 |                 |                 |                 | DII             | MENSIO         | NS              |              |                 |                 |                 |                 | KIT: CTx2x, CTx6x |
|-------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|----------------|-----------------|--------------|-----------------|-----------------|-----------------|-----------------|-------------------|
| [mm]  | Α               | В               | C               | D               | E               | ØF              | G              | Н               | J            | K               | L               | M               | N               | IMPERIAL/METRIC   |
| 12/16 | 0.865<br>[22.0] | 1.145<br>[29.0] | 0.650<br>[16.5] | 0.490<br>[12.5] | 0.220<br>[5.6]  | 0.197<br>[5.0]  | 0.060<br>[1.5] | 0.375<br>[9.5]  | #10<br>[M5]  | N/A             | 0.877<br>[22.3] | 1.300<br>[33.0] | N/A             | 60294-1           |
| 20/25 | 1.000<br>[25.4] | 1.355<br>[34.4] | 0.790<br>[20.1] | 0.630<br>[16.0] | 0.260<br>[6.5]  | 0.237<br>[6.0]  | 0.040<br>[1.0] | 0.435<br>[11.0] | 1/4<br>[M6]  | N/A             | 1.221<br>[31.0] | 1.730<br>[44.0] | N/A             | 60295-1           |
| 32/40 | 1.375<br>[34.9] | 1.800<br>[45.7] | 1.065<br>[27.0] | 0.600<br>[15.2] | 0.400<br>[10.2] | 0.394<br>[10.0] | 0.156<br>[4.0] | 0.510<br>[13.0] | 1/4<br>[M6]  | 1.695<br>[43.0] | 0.540<br>[13.7] | 1.490<br>[38.0] | 2.165<br>[55.0] | 60296-1           |
| 50/63 | 1.890<br>[48.0] | 2.365<br>[60.0] | 1.460<br>[37.1] | 0.755<br>[19.2] | 0.508<br>[12.9] | 0.472<br>[12.0] | 0.236<br>[6.0] | 0.709<br>[18.0] | 5/16<br>[M8] | 2.265<br>[57.5] | 0.659<br>[16.7] | 1.970<br>[50.0] | 2.835<br>[72.0] | 60297-1           |

Numbers in [ ] are in mm for metric units [CTx6].

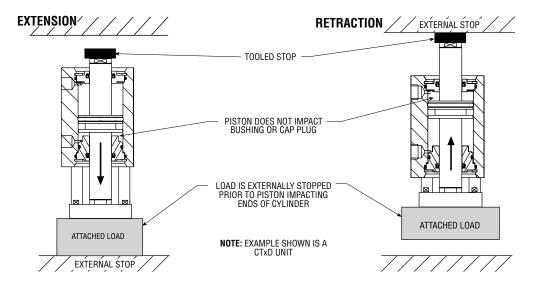
- 1) 12-25 mm IS BRITE ZINC PLATED STEEL WITH LUBRICATED BRONZE BUSHINGS
- 2) 32-63 mm IS ANODIZED ALUMINUM WITH LUBRICATED BRONZE BUSHINGS
- 3) FULCRUM PIN INCLUDED. DOES NOT INCLUDE CYLINDER PIVOT KIT
- 4) \*E IS TO CENTER OF PIVOT PIN
  5) \*\*G IS FROM CENTER OF PIVOT
  PIN TO CENTER OF FIRST
  MOUNTING HOLE
- 6) DESIGNATED CENTERLINE €
  IS CENTERLINE OF CYLINDER
  AND PIVOT PIN.




### **APPLICATIONS:** Series CTS Cylinders

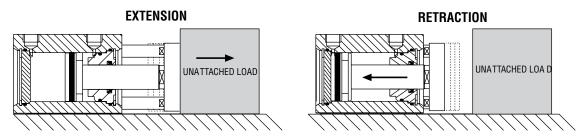
#### **BEST PRACTICES FOR MAXIMUM CYLINDER LIFE**

Maximum cylinder life can be achieved by using the cylinder to provide power and motion while externally stopping any attached loads. Shown below are examples of how to apply the Series CTS Cylinder.


### APPLICATION #1 - ATTACHED LOAD (WITH INTERNAL SHOCK PADS)

When attached loads cannot be stopped externally, optional internal shock pads are required for maximum cylinder life. It is also recommended that flow controls are used to regulate the velocity of the load and limit the kinetic energy at end of stroke.




#### APPLICATION #2 - ATTACHED LOADS EXTERNALLY STOPPED (WITHOUT INTERNAL SHOCK PADS)

Shock pads are not required if an attached load is externally stopped to prevent piston from contacting the bushings or cap plugs.

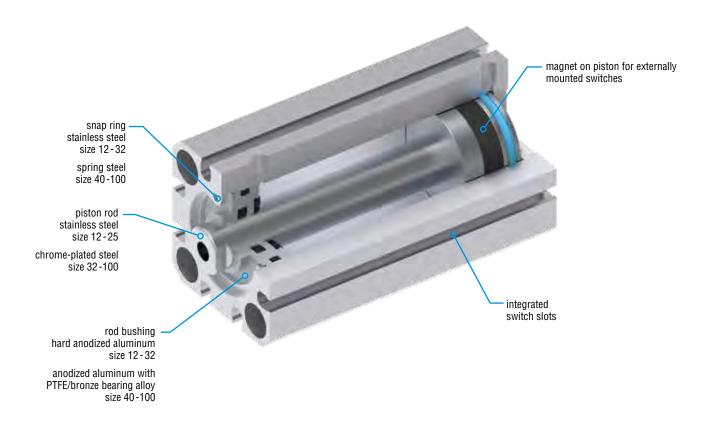


### APPLICATION #3 - UNATTACHED LOADS (WITHOUT INTERNAL SHOCK PADS)

Shock pads are not required on units with unattached loads.






# PNEUMATIC COMPACT CYLINDER

# OCQ

#### **Major Benefits**

- · Standard shock pads reduce end of travel impact
- 10 bore sizes available in incremental stroke lengths
- · Standard magnets for switch sensing capability
- · Drop-in metric mounting matching global standard
- Proven Optimax® performance at a competitive price






| MATERIALS               |  |  |  |  |  |
|-------------------------|--|--|--|--|--|
| Anodized Aluminum Alley |  |  |  |  |  |
| Anodized Aluminum Alloy |  |  |  |  |  |
|                         |  |  |  |  |  |
| See Figure              |  |  |  |  |  |
|                         |  |  |  |  |  |
|                         |  |  |  |  |  |
| NBR                     |  |  |  |  |  |
| חסאו                    |  |  |  |  |  |
|                         |  |  |  |  |  |
| PTFE                    |  |  |  |  |  |
|                         |  |  |  |  |  |

<sup>\*</sup>Size 32 through 100 only



# **ORDERING DATA:** Series OCQ Cylinders



#### **SWITCHES**

| PART NO. | DESCRIPTION                                        |
|----------|----------------------------------------------------|
| 86725-0  | Reed DC 5-30 V, 50 mA, Quick Connect               |
| 86726-0  | Sink Type (NPN), DC 5-30 V, 50 mA, Quick Connect   |
| 86727-0  | Source Type (PNP), DC 5-30 V, 50 mA, Quick Connect |

Includes one switch.

#### **CORDSETS**

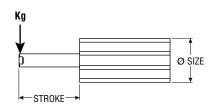
| MODEL NO. | CABLE LENGTH    |
|-----------|-----------------|
| 63549-02  | 78.74 in [2 m]  |
| 63549-05  | 196.85 in [5 m] |

Includes one cordset.

### **CAD & Sizing Assistance**

Use PHD's free online Product Sizing and CAD Configurator at phdinc.com/myphd

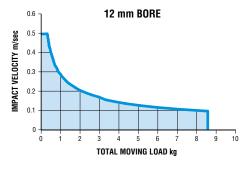



# **ENGINEERING DATA:** Series OCQ Cylinders

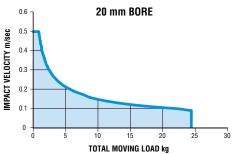
| SPECIFICATIONS         |                           | SERIES OCC      | Q CYLINDER                   |                        |
|------------------------|---------------------------|-----------------|------------------------------|------------------------|
| SPECIFICATIONS         | 12 - 16 mm                | 100 mm          |                              |                        |
| OPERATING AIR PRESSURE | 0.7-10 bar [10.2-145 psi] |                 | 0.5 - 10 bar [7.3 - 145 psi] |                        |
| OPERATING TEMPERATURE  |                           | 5°-60°C [4      | 11°-140°F]                   |                        |
| VELOCITY               | 50 - 500 mm/              | 's [2-20 in/s]  | 50-300 mm/s [2-13 in/s]      | 50-200 mm/s [2-8 in/s] |
| RATED LIFE             |                           | 3 millio        | n cycles                     |                        |
| LUBRICATION            |                           | Factory lubrica | ted for rated life           |                        |

|      | ROD            | EFFEC     | TIVE AR | EA    |         |          |          |          | UNIT \   | VEIGHT   | (g) BY S | TROKE    |          |          |          |           |
|------|----------------|-----------|---------|-------|---------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-----------|
| SIZE | DIAMETER<br>mm | DIRECTION | mm²     | in²   | 5<br>mm | 10<br>mm | 15<br>mm | 20<br>mm | 25<br>mm | 30<br>mm | 35<br>mm | 40<br>mm | 45<br>mm | 50<br>mm | 75<br>mm | 100<br>mm |
| 12   | 6              | Extend    | 113     | 0.18  | 32      | 39       | 46       | 52       | 60       | 67       |          |          |          |          |          |           |
| 12   | U              | Retract   | 85      | 0.13  | - 52    | 0.5      | 40       | 32       | 00       | 01       |          |          |          |          |          |           |
| 16   | 8              | Extend    | 201     | 0.31  | 43      | 51       | 60       | 69       | 78       | 86       |          |          |          |          |          |           |
| 10   | 0              | Retract   | 151     | 0.23  |         | 31       | 00       | 03       | 70       |          |          |          |          |          |          |           |
| 20   | 10             | Extend    | 314     | 0.49  | 67      | 80       | 95       | 109      | 123      | 138      | 152      | 165      | 180      | 194      |          |           |
|      | 10             | Retract   | 236     | 0.37  |         | - 00     | 30       | 100      | 120      | 100      | 102      | 100      | 100      | 101      |          |           |
| 25   | 12             | Extend    | 491     | 0.76  | 104     | 121      | 140      | 157      | 176      | 194      | 212      | 230      | 249      | 266      |          |           |
|      | 12             | Retract   | 378     | 0.59  | 104     | 121      | 140      | 107      | 170      | 104      | 212      | 200      | 243      | 200      |          |           |
| 32   | 16             | Extend    | 804     | 1.25  | 130     | 152      | 173      | 193      | 215      | 236      | 257      | 278      | 299      | 320      | 475      | 581       |
|      | 10             | Retract   | 603     | 0.93  | 100     | 102      | 170      | 130      | 210      | 200      | 201      | 270      | 233      | 020      | 475      | 301       |
| 40   | 16             | Extend    | 1257    | 1.95  | 194     | 217      | 240      | 263      | 287      | 309      | 332      | 356      | 378      | 402      | 587      | 708       |
|      | 10             | Retract   | 1056    | 1.64  |         | ,        | 2.10     | 200      | 207      |          | 002      |          | 0.0      | 102      | 00.      | 700       |
| 50   | 20             | Extend    | 1963    | 3.04  | _       | 343      | 378      | 412      | 446      | 480      | 515      | 549      | 583      | 617      | 897      | 1074      |
|      |                | Retract   | 1649    | 2.56  |         | 0.0      | 0.0      |          |          | 100      | 010      | 0.10     | 000      |          | 007      | 1071      |
| 63   | 20             | Extend    | 3117    | 4.83  | _       | 493      | 534      | 574      | 615      | 655      | 696      | 737      | 776      | 818      | 1168     | 1377      |
|      |                | Retract   | 2803    | 4.34  |         | 100      | 00.      | 07.      | 0.0      |          |          |          |          | 0.0      | 1100     | 1077      |
| 80   | 25             | Extend    | 5027    | 7.79  | _       | 925      | 987      | 1050     | 1114     | 1177     | 1239     | 1302     | 1366     | 1428     | 1971     | 2282      |
|      |                | Retract   | 4536    | 7.03  |         | 020      | 007      | 1.000    |          | ,        |          |          |          | 20       | .071     |           |
| 100  | 30             | Extend    | 7854    | 12.17 | _       | 1720     | 1809     | 1898     | 1988     | 2076     | 2166     | 2255     | 2343     | 2433     | 3244     | 3697      |
| .00  |                | Retract   | 7147    | 11.08 |         | 120      |          |          |          |          |          |          | 2010     |          | 0211     |           |

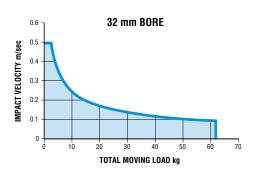
| SIZE |      |       |       | WI    | EIGHT (g) O | F MOVING | COMPONE | NTS BY STR | OKE   |       |       |        |
|------|------|-------|-------|-------|-------------|----------|---------|------------|-------|-------|-------|--------|
| SIZE | 5 mm | 10 mm | 15 mm | 20 mm | 25 mm       | 30 mm    | 35 mm   | 40 mm      | 45 mm | 50 mm | 75 mm | 100 mm |
| 12   | 8    | 9     | 10    | 11    | 12          | 13       | _       | _          | _     | _     | _     | _      |
| 16   | 16   | 18    | 20    | 22    | 24          | 26       | _       | _          | _     | _     | _     | _      |
| 20   | 25   | 28    | 30    | 33    | 36          | 40       | 43      | 46         | 49    | 51.4  | _     | _      |
| 25   | 39   | 43    | 48    | 52    | 57          | 60       | 65      | 69         | 74    | 77.6  | _     | _      |
| 32   | 73   | 80    | 87    | 95    | 103         | 110      | 118     | 126        | 133   | 140   | 178   | 217    |
| 40   | 101  | 109   | 117   | 125   | 132         | 140      | 148     | 156        | 164   | 172   | 210   | 249    |
| 50   | _    | 176   | 188   | 200   | 211         | 224      | 236     | 248        | 260   | 273   | 333   | 393    |
| 63   | _    | 244   | 257   | 269   | 282         | 295      | 307     | 320        | 332   | 346   | 409   | 472    |
| 80   | _    | 405   | 426   | 445   | 464         | 483      | 503     | 522        | 541   | 561   | 657   | 753    |
| 100  | _    | 710   | 738   | 767   | 795         | 824      | 853     | 881        | 910   | 939   | 1081  | 1223   |

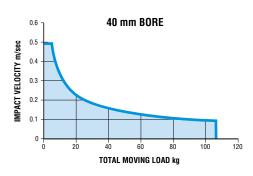

|      |         |          |          | MAX      | IMUM L   | ATERAL   | LOAD (k  | g) BY ST | ROKE     |          |          |           |
|------|---------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-----------|
| SIZE | 5<br>mm | 10<br>mm | 15<br>mm | 20<br>mm | 25<br>mm | 30<br>mm | 35<br>mm | 40<br>mm | 45<br>mm | 50<br>mm | 75<br>mm | 100<br>mm |
| 12   | 0.22    | 0.19     | 0.16     | 0.14     | 0.12     | 0.11     | _        | _        | _        | _        | _        | _         |
| 16   | 0.44    | 0.37     | 0.32     | 0.29     | 0.25     | 0.22     | _        | _        | _        | _        | _        | _         |
| 20   | 0.76    | 0.64     | 0.56     | 0.50     | 0.45     | 0.41     | 0.38     | 0.35     | 0.32     | 0.30     | _        | _         |
| 25   | 1.1     | 0.98     | 0.87     | 0.77     | 0.69     | 0.62     | 0.57     | 0.52     | 0.49     | 0.46     | _        | _         |
| 32   | 1.8     | 1.5      | 1.4      | 1.2      | 1.1      | 1.0      | 0.92     | 0.84     | 0.76     | 0.71     | 0.56     | 0.45      |
| 40   | 2.1     | 1.9      | 1.7      | 1.6      | 1.4      | 1.3      | 1.2      | 1.1      | 1.0      | 0.99     | 0.76     | 0.61      |
| 50   | _       | 3.0      | 2.7      | 2.4      | 2.2      | 2.0      | 1.8      | 1.7      | 1.6      | 1.5      | 1.2      | 0.94      |
| 63   | _       | 4.8      | 4.4      | 4.0      | 3.7      | 3.4      | 3.1      | 2.8      | 2.6      | 2.4      | 2.0      | 1.6       |
| 80   | _       | 8.2      | 7.5      | 6.9      | 6.4      | 5.9      | 5.5      | 5.1      | 4.8      | 4.6      | 3.6      | 2.9       |
| 100  | _       | 12.4     | 11.5     | 10.7     | 10.0     | 9.4      | 8.9      | 8.4      | 7.9      | 7.5      | 6.1      | 5.1       |






# **ENGINEERING DATA:** Series OCQ Cylinders


#### **MAXIMUM ALLOWABLE KINETIC ENERGY**









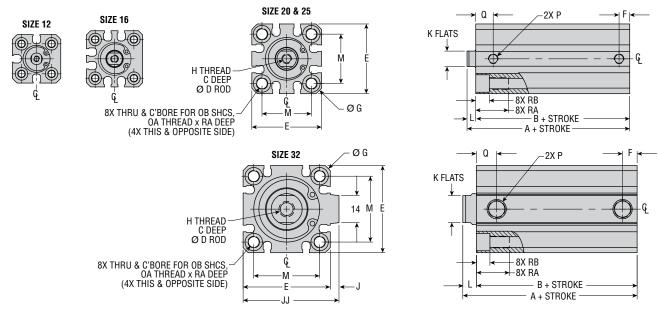










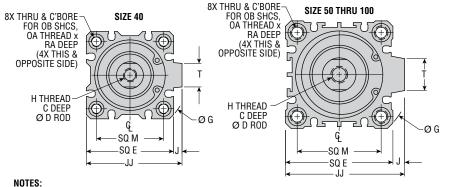



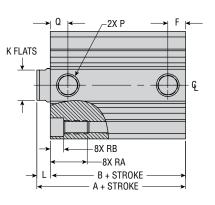





## **DIMENSIONS:** Series OCQ Cylinders

#### SIZES 12 THRU 32





#### NOTES:

- 1) DESIGNATED CENTERLINE IS CENTERLINE OF CYLINDER
  2) UNLESS OTHERWISE DIMENSIONED, MOUNTING HOLE PATTERNS
  ARE CENTERED ON DESIGNATED CENTERLINE OF CYLINDER

| <b>BORE SIZE</b> | A    | В    | C  | ØD | E  | F   | ØG | Н         | J   | JJ   | K  | L   | M    | P        | OA       | OB | Q    | RA | RB |
|------------------|------|------|----|----|----|-----|----|-----------|-----|------|----|-----|------|----------|----------|----|------|----|----|
| 12               | 25.5 | 22   | 6  | 6  | 25 | 5   | 32 | M3 x 0.5  | _   | _    | 5  | 3.5 | 15.5 | M5 x 0.8 | M4 x 0.7 | M3 | 7.5  | 11 | 4  |
| 16               | 25.5 | 22   | 8  | 8  | 29 | 5   | 38 | M4 x 0.7  | _   | _    | 6  | 3.5 | 20   | M5 x 0.8 | M4 x 0.7 | M3 | 7.5  | 11 | 4  |
| 20               | 34   | 29.5 | 7  | 10 | 36 | 5.5 | 47 | M5 x 0.8  | _   | _    | 8  | 4.5 | 25.5 | M5 x 0.8 | M6 x 1   | M5 | 9    | 17 | 7  |
| 25               | 37.5 | 32.5 | 12 | 12 | 40 | 5.5 | 52 | M6 x 1    | _   | _    | 10 | 5   | 28   | M5 x 0.8 | M6 x 1   | M5 | 11   | 17 | 7  |
| 32               | 40   | 33   | 13 | 16 | 45 | 7.5 | 60 | M8 x 1.25 | 4.5 | 49.5 | 14 | 7   | 34   | G 1/8    | M6 x 1   | M5 | 10.5 | 17 | 7  |

#### **SIZES 40 THRU 100**





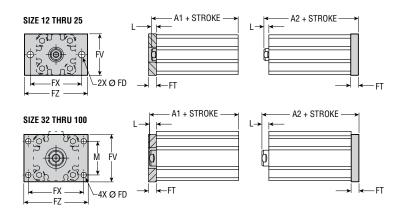
- 1) DESIGNATED CENTERLINE IS CENTERLINE OF CYLINDER
- 2) UNLESS OTHERWISE DIMENSIONED, MOUNTING HOLE PATTERNS ARE CENTERED ON DESIGNATED CENTERLINE OF CYLINDER

| <b>BORE SIZE</b> | Α    | В    | C  | ØD | Е   | Ŧ    | ØG  | Н         | J   | JJ    | K  | L  | M  | P     | OA         | OB  | Q    | RA   | RB   | T  |
|------------------|------|------|----|----|-----|------|-----|-----------|-----|-------|----|----|----|-------|------------|-----|------|------|------|----|
| 40               | 46.5 | 39.5 | 13 | 16 | 52  | 8    | 70  | M8 x 1.25 | 5   | 57    | 14 | 7  | 40 | G 1/8 | M6 x 1     | M5  | 11   | 17   | 7    | 14 |
| 50               | 48.5 | 40.5 | 15 | 20 | 64  | 10.5 | 86  | M10 x 1.5 | 7   | 71    | 17 | 8  | 50 | G 1/4 | M8 x 1.25  | M6  | 10.5 | 22   | 8    | 19 |
| 63               | 54   | 46   | 15 | 20 | 77  | 10.5 | 103 | M10 x 1.5 | 7   | 84    | 17 | 8  | 60 | G 1/4 | M10 x 1.5  | M8  | 15   | 28.5 | 10.5 | 19 |
| 80               | 63.5 | 53.5 | 21 | 25 | 98  | 12.5 | 132 | M16 x 2   | 6   | 104   | 22 | 10 | 77 | G 3/8 | M12 x 1.75 | M10 | 16   | 35.5 | 13.5 | 26 |
| 100              | 75   | 63   | 27 | 30 | 117 | 13   | 156 | M20 x 2.5 | 6.5 | 123.5 | 27 | 12 | 94 | G 3/8 | M12 x 1.75 | M10 | 23   | 35.5 | 13.5 | 26 |

All dimensions are reference only unless specifically toleranced.



# **MOUNTING KITS:** Series OCQ Cylinders


#### **FLANGE MOUNTING KITS**

87785 - 016

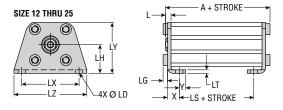
IT BASE PART
NUMBER
CYLINDER BORE SIZE

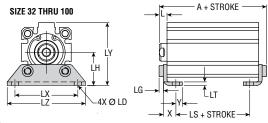
 $\begin{array}{lll} 012 = 12 \text{ mm} & 040 = 40 \text{ mm} \\ 016 = 16 \text{ mm} & 050 = 50 \text{ mm} \\ 020 = 20 \text{ mm} & 063 = 60 \text{ mm} \\ 025 = 25 \text{ mm} & 080 = 80 \text{ mm} \\ 032 = 32 \text{ mm} & 100 = 100 \text{ mm} \end{array}$ 

| SIZE |      |      | FLAI | NGE MO | OUNT D | IMENS | ONS |     |    |
|------|------|------|------|--------|--------|-------|-----|-----|----|
| SIZE | A1   | A2   | FD   | FT     | FV     | FX    | FZ  | L   | M  |
| 12   | 25.5 | 31   | 4.5  | 5.5    | 25     | 45    | 55  | 3.5 | _  |
| 16   | 25.5 | 31   | 4.5  | 5.5    | 30     | 45    | 55  | 3.5 | _  |
| 20   | 34   | 42   | 6.6  | 8      | 39     | 48    | 60  | 4.5 | _  |
| 25   | 37.5 | 45.5 | 6.6  | 8      | 42     | 52    | 64  | 5   | _  |
| 32   | 40   | 48   | 5.5  | 8      | 48     | 56    | 65  | 7   | 34 |
| 40   | 46.5 | 54.5 | 5.5  | 8      | 54     | 62    | 72  | 7   | 40 |
| 50   | 48.5 | 57.5 | 6.6  | 9      | 67     | 76    | 89  | 8   | 50 |
| 63   | 54   | 63   | 9    | 9      | 80     | 92    | 108 | 8   | 60 |
| 80   | 63.5 | 74.5 | 11   | 11     | 99     | 116   | 134 | 10  | 77 |
| 100  | 75   | 86   | 11   | 11     | 117    | 136   | 154 | 12  | 94 |



#### NOTES:


- 1) KIT MAY BE ATTACHED TO EITHER END OF CYLINDER. EACH KIT CONTAINS SINGLE FLANGE MOUNTING PLATE AND NECESSARY FASTENERS FOR MOUNTING TO CYLINDER.
- 2) CYLINDER SHOWN FOR REFERENCE ONLY.


#### **FOOT MOUNTING KITS**

BAT784 - 016

BASE PART
NUMBER CYLINDER BORE SIZE

| SIZE |      | FOOT MOUNT DIMENSIONS |     |     |     |    |     |     |      |     |      |      |  |  |  |
|------|------|-----------------------|-----|-----|-----|----|-----|-----|------|-----|------|------|--|--|--|
| SIZE | Α    | LS                    | L   | LD  | LG  | LH | LT  | LX  | LY   | LZ  | Х    | Υ    |  |  |  |
| 12   | 30.3 | 10                    | 3.5 | 4.5 | 2.8 | 17 | 2   | 34  | 29.5 | 44  | 8    | 4.5  |  |  |  |
| 16   | 30.3 | 10                    | 3.5 | 4.5 | 2.8 | 19 | 2   | 38  | 33.5 | 48  | 8    | 5    |  |  |  |
| 20   | 41.2 | 17.5                  | 4.5 | 6.6 | 4   | 24 | 3.2 | 48  | 42   | 62  | 9.2  | 5.8  |  |  |  |
| 25   | 44.7 | 17.5                  | 5   | 6.6 | 4   | 26 | 3.2 | 52  | 46   | 66  | 10.7 | 5.8  |  |  |  |
| 32   | 47.2 | 17                    | 7   | 6.6 | 4   | 30 | 3.2 | 57  | 57   | 71  | 11.2 | 5.8  |  |  |  |
| 40   | 53.7 | 23.5                  | 7   | 6.6 | 4   | 33 | 3.2 | 64  | 64   | 78  | 11.2 | 7    |  |  |  |
| 50   | 56.7 | 17.5                  | 8   | 9   | 5   | 39 | 3.2 | 79  | 78   | 95  | 14.7 | 8    |  |  |  |
| 63   | 62.2 | 20                    | 8   | 11  | 5   | 46 | 3.2 | 95  | 91.5 | 113 | 16.2 | 9    |  |  |  |
| 80   | 75   | 23.5                  | 10  | 13  | 7   | 59 | 4.5 | 118 | 114  | 140 | 19.5 | 11   |  |  |  |
| 100  | 88   | 29                    | 12  | 13  | 7   | 71 | 6   | 137 | 136  | 162 | 23   | 12.5 |  |  |  |





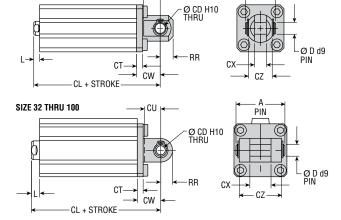
#### NOTES:

SIZE 12 THRU 25

1) EACH KIT CONTAINS BRACKET AND MOUNTING HARDWARE FOR ONE END ONLY.

PIN

2) CYLINDER SHOWN FOR REFERENCE ONLY.


#### **REAR FORK MOUNTING KITS**

KIT BASE PART
NUMBER
CYLINDER BORE SIZE
012 = 12 mm 040 = 40 1

87788

016

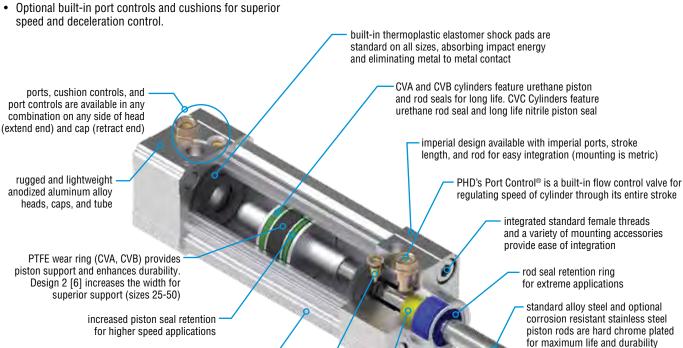
| SIZE |      |       | RI   | EAR FO | ORK M | OUNT | DIMEN | ISIONS | 3  |     |    |
|------|------|-------|------|--------|-------|------|-------|--------|----|-----|----|
| SIZE | A C  |       | Ø CD | Ø D    | CT    | CU   | CW    | CX     | CZ | L   | RR |
| 12   | 14.6 | 39.5  | 5    | 5      | 4     | 7    | 14    | 5      | 10 | 3.5 | 6  |
| 16   | 16.6 | 40.5  | 5    | 5      | 4     | 10   | 15    | 6.5    | 12 | 3.5 | 6  |
| 20   | 21   | 52    | 8    | 8      | 5     | 12   | 18    | 8      | 16 | 4.5 | 9  |
| 25   | 25.6 | 57.5  | 10   | 10     | 5     | 14   | 20    | 10     | 20 | 5   | 10 |
| 32   | 41.6 | 60    | 10   | 10     | 5     | 14   | 20    | 18     | 36 | 7   | 10 |
| 40   | 41.6 | 68.5  | 10   | 10     | 6     | 14   | 22    | 18     | 36 | 7   | 10 |
| 50   | 50.6 | 76.5  | 14   | 14     | 7     | 20   | 28    | 22     | 44 | 8   | 14 |
| 63   | 50.6 | 84    | 14   | 14     | 8     | 20   | 30    | 22     | 44 | 8   | 14 |
| 80   | 64   | 101.5 | 18   | 18     | 10    | 27   | 38    | 28     | 56 | 10  | 18 |
| 100  | 72   | 120   | 22   | 22     | 13    | 31   | 45    | 32     | 64 | 12  | 22 |

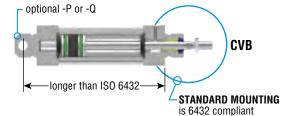


#### NOTES

- 1) EACH KIT CONTAINS: REAR FORK, FASTENERS FOR MOUNTING TO CYLINDER, PIN, AND RETAINING RINGS
- 2) CYLINDER SHOWN FOR REFERENCE ONLY.

All dimensions are reference only unless specifically toleranced.

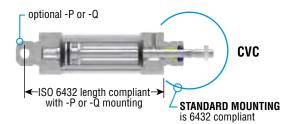




## PNEUMATIC ISO/VDMA CYLINDER



#### **Major Benefits**

- · ISO/VDMA interchange for easy mounting (metric unit).
- Imperial unit provides simplified integration in imperial facilities.
- PTFE wear ring and built-in shock pads for long cylinder life.
- Rodlok option for easy and dependable locking of piston rod.
- · Optional built-in port controls and cushions for superior

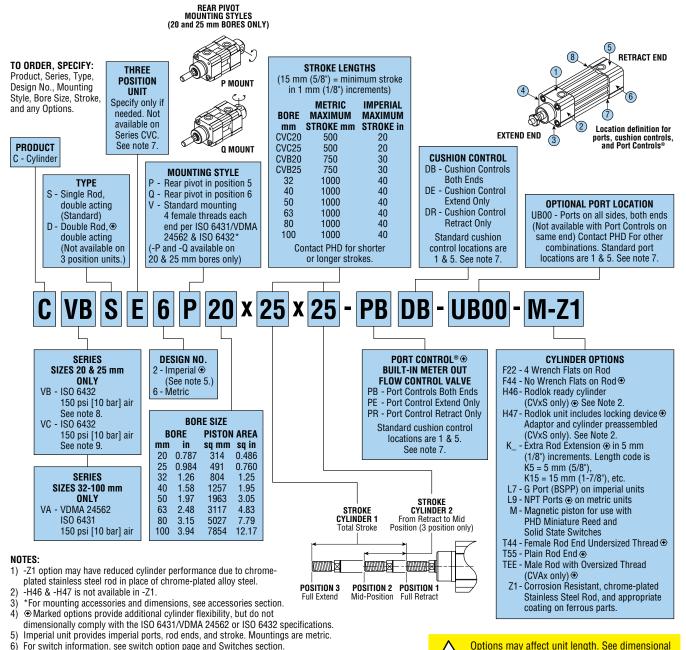





cylinders, including port and cushion controls, are easily field repairable, maximizing your investment

> effective cushion up to 1.19 in [30.2 mm] for smooth deceleration at end of stroke

- Available in 20 & 25 mm bores
- Same construction as CVA
- ISO 6432 compliant rod and mountings (metric unit)
- Longer strokes and lower breakaway than CVC
- Distance between mountings is longer than ISO 6432 specifications (metric unit)




retained for extreme applications internally lubricated engineered polymer bearing for long service life

- Available in 20 & 25 mm bores
- Same construction as CVA and CVB, uses compression piston seal
- ISO 6432 compliant rod and mountings (metric unit)
- ISO 6432 compliant length between mountings (metric unit)
- Shorter length than CVB



### **ORDERING DATA:** Series CV Cylinders



On 3 position units, ports, options -DB and/or -PB are available in locations 1 and 5 only.

Contact PHD for other configurations. See option pages.

Customer interface conforms to ISO 6432, but longer length than ISO 6432.

Customer interface and lengths conform to ISO 6432 with optional -P or -Q mounting specified on CVC only.

Options may affect unit length. See dimensional pages and option information details.

#### **SERIES 6250 SOLID STATE SWITCHES**

| PART NO.   | DESCRIPTION                                | COLOR |
|------------|--------------------------------------------|-------|
| 62505-1-02 | NPN (Sink) DC Solid State, 2 m cable       | Brown |
| 62506-1-02 | PNP (Source) DC Solid State, 2 m cable     | Tan   |
| 62515-1    | NPN (Sink) DC Solid State, Quick Connect   | Brown |
| 62516-1    | PNP (Source) DC Solid State, Quick Connect | Tan   |

NOTE: Switches must be ordered separately. See Switches and Sensors section for complete switch information.

#### **SERIES 6250 REED SWITCHES**

| PART NO.   | DESCRIPTION               | COLOR  |
|------------|---------------------------|--------|
| 62507-1-02 | AC/DC Reed, 2 m cable     | Silver |
| 62517-1    | AC/DC Reed, Quick Connect | Silver |

#### **CAD & Sizing Assistance**

Use PHD's free online Product Sizing and CAD Configurator at phdinc.com/myphd



# **ENGINEERING DATA:** Series CV Cylinders

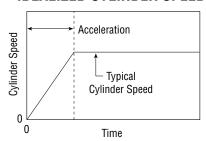
| SPECIFICATIONS     | SERIES CVA, CVB                                                 | SERIES CVC                                                |  |  |  |
|--------------------|-----------------------------------------------------------------|-----------------------------------------------------------|--|--|--|
| OPERATING PRESSURE |                                                                 |                                                           |  |  |  |
| SINGLE ROD         | 7.5 to 150 psi [0.5 bar to 10 bar]                              | 10 to 150 psi [0.67 bar to 10 bar]                        |  |  |  |
| DOUBLE ROD         | 15 to 150 psi [1.0 bar to 10 bar]                               |                                                           |  |  |  |
| TEMPERATURE LIMITS | -20° to +180°F [-29° to +82°C]                                  |                                                           |  |  |  |
| VELOCITY           | 20 in/sec [0.5 m/sec] typical min, zero load at 100 psi [7 bar] |                                                           |  |  |  |
| LIFE EXPECTANCY    | 130 million linear inches [3.3 million linear meters] min       | 100 million linear inches [2.5 million linear meters] min |  |  |  |
| LUBRICATION        | Factory lubricated for rated life                               |                                                           |  |  |  |
| MAINTENANCE        | Field re                                                        | pairable                                                  |  |  |  |

| BORE NOMINAL STR |        | STROKE (L) | NOMINAL STR<br>FULL STROKE 1 |         | NOMINAL STROKE<br>STROKE TOLE |           |  |
|------------------|--------|------------|------------------------------|---------|-------------------------------|-----------|--|
| mm               | in mm  |            | in                           | mm      | in                            | mm        |  |
| 20.25            | L ≤ 4  | L ≤ 100    | +0.059/-0                    | +1.5/-0 | +0.059/-0.046                 | +1.5/-1.2 |  |
| 20, 25           | L > 4  | L > 100    | +0.079/-0                    | +2.0/-0 | +0.079/-0.046                 | +2.0/-1.2 |  |
| 32, 40, 50       | L ≤ 20 | L ≤ 500    | +0.079/-0                    | +2.0/-0 | +0.079/-0.050                 | +2.0/-1.3 |  |
| 32, 40, 50       | L > 20 | L > 500    | +0.126/-0                    | +3.2/-0 | +0.126/-0.050                 | +3.2/-1.3 |  |
| 63, 80, 100      | L ≤ 20 | L ≤ 500    | +0.098/-0                    | +2.5/-0 | +0.098/-0.070                 | +2.5/-1.8 |  |
|                  | L > 20 | L > 500    | +0.157/-0                    | +4.0/-0 | +0.157/-0.070                 | +4.0/-1.8 |  |

**NOTE:** \*Stroke tolerances/values measured at 60 ±4 psi [4 ±0.27 bar] due to impact seal design.

#### **CYLINDER WEIGHTS**

| OTLINDLIT WEIGHTO |       |        |        |           |       |  |  |  |
|-------------------|-------|--------|--------|-----------|-------|--|--|--|
| BORI              | E DIA | BASE V | VEIGHT | ADDER PER |       |  |  |  |
| in                | mm    | lb     | kg     | 1 in      | 25 mm |  |  |  |
| 0.787             | 20    | 0.55   | 0.25   | 0.1       | 0.04  |  |  |  |
| 0.984             | 25    | 0.69   | 0.31   | 0.12      | 0.05  |  |  |  |
| 1.260             | 32    | 1.45   | 0.66   | 0.17      | 0.08  |  |  |  |
| 1.575             | 40    | 2.08   | 0.94   | 0.23      | 0.10  |  |  |  |
| 1.969             | 50    | 3.28   | 1.49   | 0.32      | 0.15  |  |  |  |
| 2.480             | 63    | 4.87   | 2.21   | 0.36      | 0.16  |  |  |  |
| 3.150             | 80    | 7.78   | 3.53   | 0.52      | 0.24  |  |  |  |
| 3.937             | 100   | 11.03  | 5.00   | 0.6       | 0.27  |  |  |  |




#### **CYLINDER SPEEDS**

The cylinder speed and time required for the cylinder to extend or retract are dependent upon many application conditions including supply line pressure, valve rating, line size, attached tooling, flow controls, etc. Upon actuation, the cylinder will accelerate from rest to some final speed prior to end of stroke. This is illustrated by the

Idealized Cylinder Speed graph. Using the speed data, the total time to extend or retract can be approximated. Actual extend and retract times will vary, especially as the application conditions change from those stated below.

#### **IDEALIZED CYLINDER SPEED**



#### CYLINDER SPEED CALCULATIONS

|                                                      | STANDARD<br>Metric                                                            | & CUSHION UNIT<br>Imperial     | PORT CONTR<br>Metric                                                          | OL UNIT (FULL OPEN)<br>Imperial                        |  |
|------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------|--|
| Approximate Extend or Retract Time (seconds)         | A + [ Stroke - B 1000 x C                                                     | A + \[ \frac{Stroke - B}{C} \] | D + \[ \begin{array}{c} \text{Stroke - E} \\ \text{1000 x F} \end{array} \]   | D + \[ \begin{array}{c} Stroke - E \\ F \end{array} \] |  |
| EXAMPLE<br>50 mm bore cylinder<br>with 200 mm stroke | $0.053 + \left[ \frac{200 - 48}{1000 \times 2.03} \right] = 0.13 \text{ sec}$ |                                | $0.159 + \left[ \frac{200 - 52}{1000 \times 0.53} \right] = 0.44 \text{ sec}$ |                                                        |  |

Equation not applicable for imperial values.

#### **SPEED DATA**

|      | STAN                        | PORT CONTROL UNITS (FULL OPEN)       |    |        |                       |                             |        |                       |        |                       |
|------|-----------------------------|--------------------------------------|----|--------|-----------------------|-----------------------------|--------|-----------------------|--------|-----------------------|
| BORE | [A]<br>Acceleration<br>Time | [B]<br>Stroke during<br>Acceleration |    | TYP    | C]<br>ICAL<br>R SPEED | [D]<br>Acceleration<br>Time | STROKE | ]<br>During<br>Ration | TYP    | F]<br>ICAL<br>R SPEED |
| mm   | S                           | in                                   | mm | in/sec | m/sec                 | S                           | in     | mm                    | in/sec | m/sec                 |
| 20   | 0.025                       | 2.3                                  | 58 | 200    | 5.08                  | 0.065                       | 1.2    | 31                    | 35     | 0.89                  |
| 25   | 0.023                       | 1.8                                  | 46 | 150    | 3.81                  | 0.103                       | 1.5    | 38                    | 24     | 0.61                  |
| 32   | 0.027                       | 1.3                                  | 33 | 105    | 2.67                  | 0.120                       | 2.1    | 52                    | 33     | 0.84                  |
| 40   | 0.033                       | 1.3                                  | 33 | 80     | 2.03                  | 0.109                       | 2.4    | 61                    | 36     | 0.91                  |
| 50   | 0.053                       | 1.9                                  | 48 | 80     | 2.03                  | 0.159                       | 2.1    | 52                    | 21     | 0.53                  |
| 63   | 0.056                       | 1.2                                  | 30 | 35     | 0.89                  | 0.116                       | 2.3    | 58                    | 25     | 0.64                  |
| 80   | 0.079                       | 1.2                                  | 30 | 25     | 0.64                  | 0.143                       | 2.0    | 51                    | 18     | 0.46                  |
| 100  | 0.075                       | 1.4                                  | 36 | 25     | 0.64                  | 0.143                       | 2.2    | 56                    | 20     | 0.51                  |

**NOTES:** The above speed data is based on:

- 1) No attached load with a line pressure of 80 psi [5.5 bar] with a valve rated at Cv=9.0.
- 2) 20 mm and 25 mm cylinders tested with 0.17" ID tubing.
- 3) 32 mm and 40 mm cylinders tested with 0.28" ID tubing.
- 4) 50 mm, 63 mm, and 80 mm cylinders tested with 0.38" ID tubing.
- 5) 100 mm cylinders tested with two 0.38" ID tubes to each port from the valve.

## METRIC TO IMPERIAL CONVERSION

|        | MULTIPLY | BY     | TO OBTAIN |
|--------|----------|--------|-----------|
| LENGTH | mm       | 0.0394 | in        |
| SPEED  | m/sec    | 39.37  | in/sec    |



### **SIZING:** Series CV Cylinders

#### IMPERIAL TO METRIC CONVERSION METRIC TO IMPERIAL CONVERSION

|          | MULTIPLY | BY    | TO OBTAIN | MULTIPLY | BY     | TO OBTAIN |
|----------|----------|-------|-----------|----------|--------|-----------|
| LENGTH   | in       | 25.4  | mm        | mm       | 0.0394 | in        |
| FORCE    | lbs      | 4.45  | N         | N        | 0.225  | lbs       |
| PRESSURE | psi      | 0.069 | bar       | bar      | 14.5   | psi       |

#### **HOW TO DETERMINE CORRECT CYLINDER SIZE**

**Step 1.** Determine stroke and force required for the application.

**Step 2.** Determine the force produced by the cylinder using the force calculations below. The cylinder force is based on the following formulas and the data from the cylinder force table.

|                                           | Imperial<br>F = P x A | Metric<br>F = 0.1 x P x A |
|-------------------------------------------|-----------------------|---------------------------|
| F = Cylinder Force                        | lbs                   | N                         |
| P = Operating Pressure                    | psi                   | bar                       |
| A = Effective Area<br>(Extend or Retract) | in²                   | mm²                       |

#### **CYLINDER FORCE**

| 012002       |     |                 |    |                  |                   |      |  |  |  |
|--------------|-----|-----------------|----|------------------|-------------------|------|--|--|--|
| BOI<br>DIAMI |     | ROD<br>Diameter |    | ROD<br>DIRECTION | EFFECTIVE<br>Area |      |  |  |  |
| in           | mm  | in              | mm | DINLOTION        | in²               | mm²  |  |  |  |
| 0.787        | 20  | 0.315           | 8  | EXTEND           | 0.49              | 314  |  |  |  |
| 0.767        | 20  | 0.515           | 0  | RETRACT          | 0.41              | 264  |  |  |  |
| 0.984        | 25  | 0.394           | 10 | EXTEND           | 0.76              | 491  |  |  |  |
| 0.904        | 20  | 0.394           | 10 | RETRACT          | 0.64              | 412  |  |  |  |
| 1.260        | 32  | 0.472           | 12 | EXTEND           | 1.25              | 804  |  |  |  |
| 1.200        | 32  | 0.472           | 12 | RETRACT          | 1.07              | 691  |  |  |  |
| 1.575        | 40  | 0.630           | 16 | EXTEND           | 1.95              | 1257 |  |  |  |
| 1.070        | 40  | 0.030           | 10 | RETRACT          | 1.64              | 1056 |  |  |  |
| 1.969        | 50  | 0.787           | 20 | EXTEND           | 3.04              | 1963 |  |  |  |
| 1.909        | 50  | 0.767           | 20 | RETRACT          | 2.56              | 1649 |  |  |  |
| 2.480        | 63  | 0.787           | 20 | EXTEND           | 4.83              | 3117 |  |  |  |
| 2.400        | 00  | 0.707           | 20 | RETRACT          | 4.34              | 2803 |  |  |  |
| 3.150        | 80  | 0.984           | 25 | EXTEND           | 7.79              | 5027 |  |  |  |
| 3.130        | 00  | 0.304           | 20 | RETRACT          | 7.03              | 4536 |  |  |  |
| 3.937        | 100 | 0.984           | 25 | EXTEND           | 12.17             | 7854 |  |  |  |
| 3.937        | 100 | 0.904           | 20 | RETRACT          | 11.41             | 7363 |  |  |  |

**NOTE:** Use retract figures for calculating double rod cylinder forces in both directions.

**Step 3.** For the selected cylinder, verify that there is sufficient rod column strength based on the cylinder extend force and stroke length. Rod column strength curves are based on the following formula:

$$F_c = \frac{\pi^2 E I}{(LK)^2 S_f}$$

|                                         | IMPERIAL                 | METRIC          |
|-----------------------------------------|--------------------------|-----------------|
| Fc = Maximum Column Force               | lbs                      | N               |
| E = Modulus of Elasticity               | 30 x 10 <sup>6</sup> psi | 207 GPa         |
| L = Stroke Length                       | in                       | mm              |
| I = Moment of Inertia                   | in <sup>4</sup>          | mm <sup>4</sup> |
| = $\pi$ (Rod Diameter) <sup>4</sup> /64 |                          |                 |
| K = Stroke Factor                       | (see chart)              | (see chart)     |
| S <sub>f</sub> = Safety Factor          | 5                        | 5               |

| ROD END CYLINDER<br>CONDITION MOUNT | COLUMN<br>STRENGTH<br>CURVE | STROKE<br>FACTOR K |
|-------------------------------------|-----------------------------|--------------------|
| Fixed<br>& Supported Fixed          | A                           | 2                  |
| Pivoted & Guided Pivot at Rear      | A                           | 2                  |
| Pivoted & Guided Fixed              | See<br>Note                 | 0.7                |
| Fixed & Guided Fixed                | See<br>Note                 | 0.5                |

**NOTE:** In these two cases, column strength is sufficient for stroke lengths less than or equal to 40 in [1000 mm] for CVA units and 30 in [750 mm] for CVB and CVC units.

#### Example:

**Step 1.** For a specific application, it has been determined that a cylinder is required to operate within the following parameters:

P = Operating Pressure = 80 psi [5.5 bar]

F = Required Extend Force = 150 lbs [667 N]

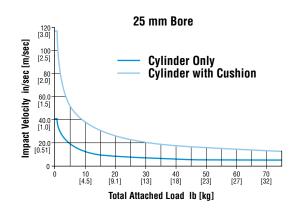
L = Required Stroke = 30 in [762 mm]

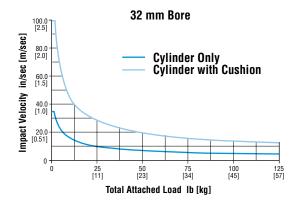
V = Required Maximum Velocity = 20 in/sec [0.51 m/sec]

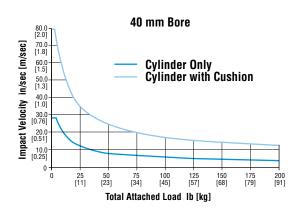
M = Attached Load = 75 lbs [35 kg]

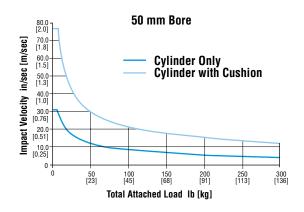
Mounting type: Rod end is pivoted and guided Cylinder is pivoted at rear

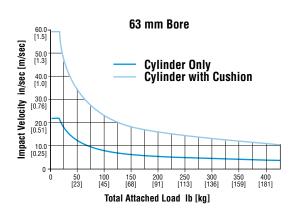
**Step 2.** Using the Cylinder Force Graphs on page 42, locate 80 psi [5.5 bar] on the horizontal axis. Follow the line vertically until it intersects the solid (extend) diagonal line on the chart. The 32 mm cylinder extend force is only 100 lbs [445 N] at 80 psi [5.5 bar] less than the required 150 lbs [667 N]. The 40 mm is capable of just over 150 lbs [667 N] extend force at this pressure. Select the 40 mm and proceed to the next step.

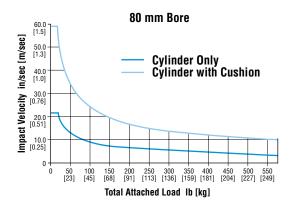

**Step 3.** Check column strength. Based on the mounting types, use curve A on the 40 mm Rod Column Strength Chart on page 42. At 150 lbs [667 N] extend force, the maximum allowable cylinder stroke is 27 in [686 mm]. However, the required stroke is 30 in [762 mm]. Assuming the stroke cannot be changed, it is necessary to select a cylinder with a larger rod diameter. Checking the 50 mm cylinder in the same way as was done for the 40 mm shows that the 50 mm cylinder is acceptable.


**Step 4.** Using the Kinetic Energy Graphs on page 41, find the point on the 50 mm chart that corresponds to the given maximum velocity and attached load. The chart shows that the cylinder must be specified with cushions to properly decelerate the load.





#### MAXIMUM ALLOWABLE KINETIC ENERGY GRAPHS



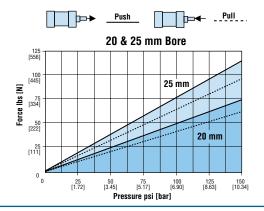





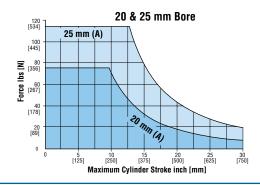


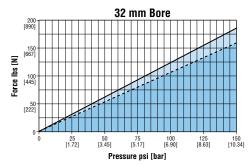


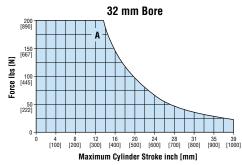


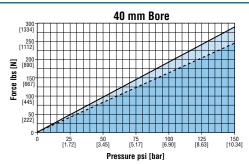



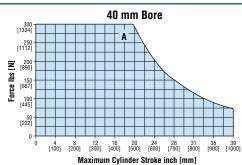


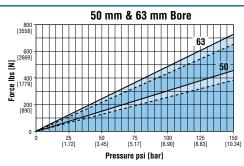



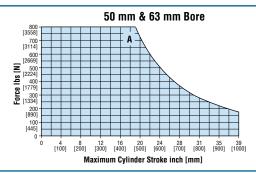


# **SIZING:** Series CV Cylinders

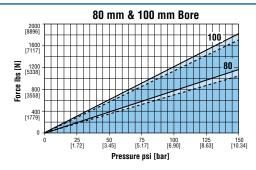

#### **CYLINDER FORCE GRAPHS**

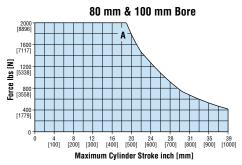




#### **ROD COLUMN STRENGTH GRAPHS**



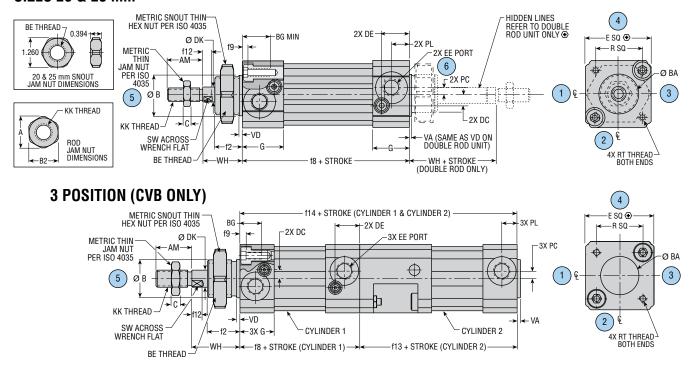



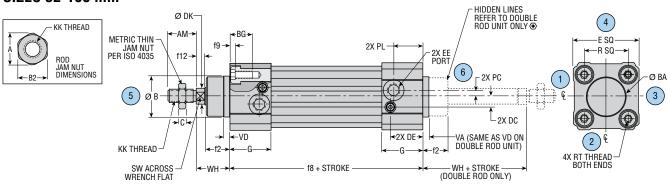


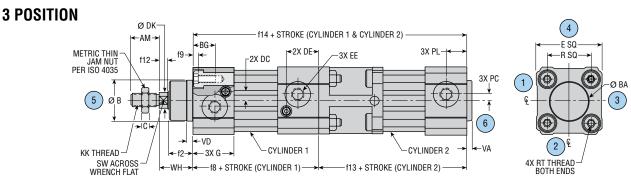








### **DIMENSIONS:** Series CV Cylinders

#### **SIZES 20 & 25 mm**



#### **SIZES 32-100 mm**





Port Position: Indicated by circled numbers



# **DIMENSIONS:** Series CV Cylinders

|                 |         |           |         |            |         |            |         | BORE       | BORE SIZE |           |         |           |         |           |         |           |
|-----------------|---------|-----------|---------|------------|---------|------------|---------|------------|-----------|-----------|---------|-----------|---------|-----------|---------|-----------|
| LETTER DIM      | 20      | 20 mm     | 25      | 25 mm      | 32      | 32 mm      | 40      | 40 mm      | 50        | 50 mm     | 63      | 63 mm     | 80      | 80 mm     | 10(     | 100 mm    |
|                 | in      | mm        | in      | mm         | ui      | mm         | n       | mm         | ë         | mm        | 'n      | mm        | 'n      | mm        | 'n      | mm        |
| A               | 0.577   | 14.7      | 0.650   | 16.5       | 0.650   | 16.5       | 0.819   | 20.8       | 1.083     | 27.5      | 1.083   | 27.5      | 1.299   | 33.0      | 1.299   | 33.0      |
| AM              | 0.748   | 19.0      | 0.827   | 21.0       | 0.827   | 21.0       | 906.0   | 23.0       | 1.220     | 31.0      | 1.220   | 31.0      | 1.535   | 39.0      | 1.535   | 39.0      |
| ØB              | 0.864   | 22.0      | 0.864   | 22.0       | 1.178   | 30.0       | 1.374   | 34.9       | 1.571     | 39.9      | 1.768   | 44.9      | 1.768   | 44.9      | 2.161   | 54.9      |
| B2              | 0.500   | 12.7      | 0.562   | 14.3       | 0.562   | 14.3       | 0.709   | 18.0       | 0.938     | 23.8      | 0.938   | 23.8      | 1.125   | 28.6      | 1.125   | 28.6      |
| BA              | 0.864   | 22.0      | 0.864   | 22.0       | 1.178   | 30.0       | 1.374   | 34.9       | 1.571     | 39.9      | 1.768   | 44.9      | 1.768   | 44.9      | 2.161   | 54.9      |
| BE              | MZ      | M22 x 1.5 | MZ;     | M22 x 1.5  |         |            |         |            |           |           |         |           | ·       |           |         |           |
| BG min          | 0.472   | 12.0      | 0.472   | 12.0       | 0.709   | 18.0       | 0.709   | 18.0       | 0.787     | 20.0      | 0.787   | 20.0      | 0.787   | 20.0      | 0.787   | 20.0      |
| O               | 0.188   | 4.8       | 0.219   | 5.6        | 0.219   | 9.6        | 0.323   | 8.2        | 0.375     | 9.5       | 0.385   | 9.5       | 0.422   | 10.7      | 0.442   | 11.2      |
| DC***           | 0.190   | 4.8       | 0.226   | 2.2        | 0.276   | 7.0        | 0.374   | 9.5        | 0.394     | 10.0      | 0.354   | 9.0       | 0.591   | 15.0      | 0.630   | 16.0      |
| DE***           | 0.581   | 14.8      | 0.561   | 14.2       | 0.965   | 24.5       | 1.083   | 27.5       | 1.043     | 26.5      | 1.201   | 30.5      | 1.181   | 30.0      | 1.339   | 34.0      |
| DK              | 0.315   | 8.0       | 0.394   | 10.0       | 0.472   | 12.0       | 0.630   | 16.0       | 0.787     | 20.0      | 0.787   | 20.0      | 0.984   | 25.0      | 0.984   | 25.0      |
| ш               | 1.457   | 37.0      | 1.575   | 40.0       | 1.949   | 49.5       | 2.205   | 56.0       | 2.697     | 68.5      | 3.150   | 80.0      | 3.858   | 98.0      | 4.528   | 115.0     |
| EE PORT**       | 1/8 NPT | G 1/8     | 1/8 NPT | G 1/8      | 1/8 NPT | G 1/8      | 1/4 NPT | G 1/4      | 1/4 NPT   | G 1/4     | 3/8 NPT | 6 3/8     | 3/8 NPT | G 3/8     | 1/2 NPT | G 1/2     |
| EE G PORT DEPTH | I       | 8.0       | I       | 8.0        | I       | 8.0        | I       | 9.0        | I         | 9.0       | I       | 12.0      | I       | 12.0      | I       | 14.0      |
| 12              | 0.670   | 17.0      | 0.748   | 19.0       | 0.729   | 18.5       | 0.802   | 20.4       | 1.085     | 27.5      | 1.084   | 27.5      | 1.316   | 33.4      | 1.438   | 36.5      |
| f8 CVA          | I       | ı         | Ι       | I          | 3.702   | 94.0       | 4.133   | 105.0      | 4.173     | 106.0     | 4.764   | 121.0     | 5.039   | 128.0     | 5.434   | 138.0     |
| f8 CVB          | 2.637   | 67.0      | 2.755   | 70.0       | 1       | I          | I       | I          |           |           |         | I         | 1       |           |         |           |
| f8 CVC          | 2.323   | 29.0      | 2.520   | 64.0       | I       | I          | I       | I          | Ι         | I         | Ι       | I         | Ι       | I         | Ι       | 1         |
| 64              | 0.140   | 3.6       | 0.140   | 3.6        | 0.158   | 4.0        | 0.158   | 4.3        | 0.210     | 5.3       | 0.210   | 5.3       | 0.256   | 6.5       | 0.256   | 6.5       |
| f12             | 0.196   | 5.0       | 0.236   | 0.9        | 0.236   | 0.9        | 0.256   | 6.5        | 0.315     | 8.0       | 0.315   | 8.0       | 0.394   | 10.0      | 0.394   | 10.0      |
| f13             | 3.504   | 89.0      | 3.622   | 92.0       | 4.371   | 111.0      | 4.822   | 122.5      | 5.728     | 145.5     | 6.181   | 157.0     | 6.772   | 172.0     | 7.008   | 178.0     |
| f14             | 6.141   | 156.0     | 6.377   | 162.0      | 8.073   | 205.0      | 8.955   | 227.5      | 9.901     | 251.5     | 10.945  | 278.0     | 11.811  | 300.0     | 12.441  | 316.0     |
| В               | 0.787   | 20.0      | 0.787   | 20.0       | 1.221   | 31.0       | 1.358   | 34.5       | 1.358     | 34.5      | 1.496   | 38.0      | 1.496   | 38.0      | 1.654   | 42.0      |
| KK              | 5/16-24 | M8 x 1.25 | 3/8-24  | M10 x 1.25 | 3/8-24  | M10 x 1.25 |         | M12 x 1.25 | 2/8-18    | M16 x 1.5 | 2/8-18  | M16 x 1.5 | 3/4-16  | M20 x 1.5 | 3/4-16  | M20 x 1.5 |
| PC***           | 0.167   | 4.2       | 0.177   | 4.5        | 0.197   | 5.0        | 0.236   | 0.9        | 0.236     | 0.9       | 0.394   | 10.0      | 0.394   | 10.0      | 0.472   | 12.0      |
| PL***           | 0.354   | 9.0       | 0.354   | 9.0        | 0.630   | 16.0       | 0.728   | 18.5       | 0.728     | 18.5      | 0.787   | 20.0      | 0.709   | 18.0      | 0.867   | 22.0      |
| R               | 1.024   | 26.0      | 1.063   | 27.0       | 1.280   | 32.5       | 1.496   | 38.0       | 1.831     | 46.5      | 2.224   | 56.5      | 2.835   | 72.0      | 3.504   | 89.0      |
| RT              | M4      | M4 × 0.7  | M4      | M4 x 0.7   | M       | M6 x 1     | M       | M6 x 1     | 1 × 8M    | < 1.25    | 1 × 8M  | x 1.25    | M10     | M10 x 1.5 | . × 01M | 1 x 1.5   |
| SW              | 0.270   | 6.9       | 0.315   | 8.0        | 0.389   | 6.6        | 0.507   | 12.9       | 0.625     | 15.9      | 0.625   | 15.9      | 0.828   | 21.0      | 0.822   | 20.9      |
| VA              | 0.079   | 2.0       | 0.079   | 2.0        | 0.142   | 3.6        | 0.142   | 3.6        | 0.142     | 3.6       | 0.143   | 3.6       | 0.143   | 3.6       | 0.142   | 3.6       |
| ΛD              | 0.079   | 2.0       | 0.079   | 2.0        | 0.179   | 4.5        | 0.182   | 4.6        | 0.182     | 4.6       | 0.184   | 4.7       | 0.184   | 4.7       | 0.176   | 4.5       |
| WH*             | 0.945   | 24.0      | 1.102   | 28.0       | 1.024   | 26.0       | 1.181   | 30.0       | 1.457     | 37.0      | 1.457   | 37.0      | 1.811   | 46.0      | 2.008   | 51.0      |
| NOTES:          |         | :         | -       | -          | -       | -          |         |            |           |           |         |           |         |           |         |           |

- 1) Unless otherwise dimensioned, mounting hole patterns are centered on the cylinder.

  2) Ports and cushions may appear on either side of the cylinder centerline based on option combinations.

  3) \*\*All metric (CVxx6) units, except port with Port Control® on same side, comply with ISO 16030 and DIN 3852 part 2 port specifications for short stud and large sealing surface. See Port Control® option sheet for port and Port Control® dimensions on units with ports and Port Controls® on the same side.

  4) \*WH values are determined with cylinder at 60 ± 4 psi [4 ±0.27 bar] due to impact seal design.

  5) \*\*\* 

  5) \*\*\* 

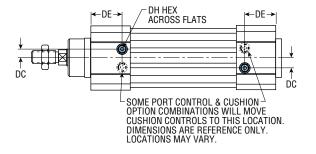
  6) Marked dimensions on the previous page provide additional flexibility, but do not dimensionally comply with ISO 6431/VDMA 24562 or ISO 6432 specifications.



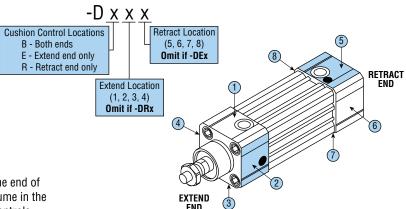
DB CUSHION CONTROL IN BOTH DIRECTIONS

(standard location 1 & 5, see note)

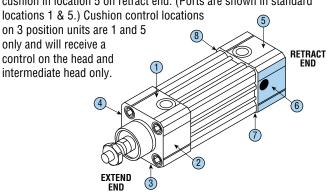
DE CUSHION CONTROL ON EXTEND ONLY


(standard location 1, not available on 3 position units)

DR CUSHION CONTROL ON RETRACT ONLY


(standard location 5, not available on 3 position units)

PHD cushions are designed for smooth deceleration at the end of stroke. When the cushion is activated, the remaining volume in the cylinder must exhaust past an adjustable needle which controls the amount of deceleration. The effective cushion lengths for each bore size are shown in the table below. To specify different cushion control locations on the head or cap, see option code above.


**NOTE:** Cushion controls on 3 position units are available only with -DB option in locations 1 and 5 only. 3 position units will have cushion on full extend and full retract.



#### **CUSHION CONTROL OPTIONS**



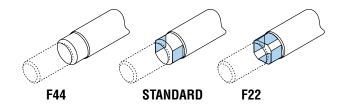
Unit shown is -DB25, cushion in location 2 on extend end and cushion in location 5 on retract end. (Ports are shown in standard



Unit shown is -DR6, cushion in location 6 on retract end and none on extend end. (Ports are shown in standard locations 1 & 5.)

|                             |             |      |       |      |       |      |       | BORE | SIZE  |      |       |      |       |      |       |      |
|-----------------------------|-------------|------|-------|------|-------|------|-------|------|-------|------|-------|------|-------|------|-------|------|
| LETTER DIM                  | <b>20</b> n | nm   | 25    | mm   | 32    | mm   | 40    | mm   | 50 ı  | mm   | 63 ו  | mm   | 80 ו  | mm   | 100   | mm   |
|                             | in          | mm   | in    | mm   | in    | mm   | in    | mm   | in    | mm   | in    | mm   | in    | mm   | in    | mm   |
| DC                          | 0.190       | 4.8  | 0.226 | 5.7  | 0.276 | 7.0  | 0.374 | 9.5  | 0.394 | 10.0 | 0.354 | 9.0  | 0.591 | 15.0 | 0.630 | 16.0 |
| DE                          | 0.581       | 14.8 | 0.561 | 14.2 | 0.965 | 24.5 | 1.083 | 27.5 | 1.043 | 26.5 | 1.201 | 30.5 | 1.181 | 30.0 | 1.339 | 34.0 |
| DH                          | _           | 2.5  | 0.561 | 2.5  | _     | 2.5  | _     | 2.5  | _     | 2.5  | _     | 2.5  | _     | 3.0  | _     | 3.0  |
| EFFECTIVE<br>CUSHION LENGTH | 0.441       | 11.2 | 0.469 | 11.9 | 0.598 | 15.2 | 0.807 | 20.5 | 0.870 | 22.1 | 0.870 | 20.4 | 0.894 | 22.7 | 1.189 | 30.2 |

### F22


#### **4 WRENCH FLATS ON ROD END ①**

This option omits rod end wrench flats. If this option is specified on double rod units, both rod ends will be supplied without wrench flats.



#### NO WRENCH FLATS ON ROD END (+)

With this option, the rod is supplied with four rod end flats instead of the standard two flats. If this option is specified on double rod units, both rod ends will be supplied with four wrench flats.



① For metric units (CVxx6).

This option does not dimensionally comply with the ISO 6431/VDMA 24562 or ISO 6432 specifications.



H46

#### **RODLOK READY CYLINDER**

Available on single rod units only (Rodlok sold separately) ⊕



# RODLOK CYLINDER & RODLOK Available on single rod units only

(Preassembled)

PHD's Rodlok is ideal for locking the piston rod while in a static/ stationary position. When the pressure is removed from the port of the Rodlok, the mechanism will grip the rod and prevent it from moving. The loads are held indefinitely without power. Rodlok performance is application and environment sensitive (cleanliness of rod or Rodlok will also affect performance). THE RODLOK IS NOT DESIGNED TO BE USED AS A PERSONAL SAFETY DEVICE.

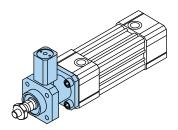
**Option -H46** provides a Rodlok ready cylinder with appropriate rod extension and materials for use with PHD's Rodlok.

**Option -H47** provides a cylinder and Rodlok pre-assembled. The port for the Rodlok will be assembled in the same position as the port on the extend end of the cylinder.

The Rodlok locking device and adaptor can be purchased separately as kits. See chart at right. The locking device and adaptor are not available with the -Z1 corrosion resistant finish.

Dimensions continued on next page.

| BORE | STATIC LOCK | (ING FORCE* |
|------|-------------|-------------|
| mm   | lb          | N           |
| 20   | 79          | 350         |
| 25   | 90          | 400         |
| 32   | 135         | 600         |
| 40   | 225         | 1000        |
| 50   | 337         | 1500        |
| 63   | 495         | 2200        |
| 80   | 674         | 3000        |
| 100  | 1124        | 5000        |


NOTE: \*Locking force indicated above is the actual locking force with a dry, clean rod and does not include any safety factor.

#### OPERATING PRESSURE

The operating pressure for the locking device is different than the operating pressure for the cylinder with the Rodlok attached. The locking device of the Rodlok is designed with an operating pressure range of 60 psi minimum to 150 psi maximum [4 to 10 bar]. The Series CV Cylinder with a Rodlok attached has an operating pressure range of 22 psi minimum to 150 psi maximum [1.5 to 10 bar].

① For metric units (CVxx6).

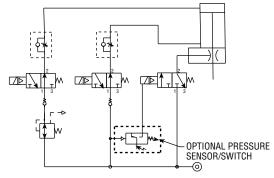
This option does not dimensionally comply with the ISO 6431/VDMA 24562 or ISO 6432 specifications.



#### **RODLOK KITS**





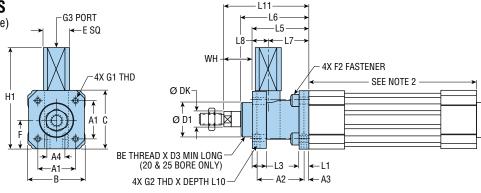



|            | _                     | _ ~             |                     |                            |
|------------|-----------------------|-----------------|---------------------|----------------------------|
| BORE<br>mm | LOCKING<br>DEVICE KIT | ADAPTOR<br>Kit* | COMPLETE<br>Rodlok* | IMPERIAL PORT<br>ADAPTOR** |
| 20         | 63459-07-1            | 63460-07-1      | 63461-07-1          | _                          |
| 25         | 63459-08-1            | 63460-08-1      | 63461-08-1          | _                          |
| 32         | 63459-01-1            | 63460-01-1      | 63461-01-1          | 63465-1                    |
| 40         | 63459-02-1            | 63460-02-1      | 63461-02-1          | 63465-1                    |
| 50         | 63459-03-1            | 63460-03-1      | 63461-03-1          | 63465-1                    |
| 63         | 63459-04-1            | 63460-04-1      | 63461-04-1          | 63465-1                    |
| 80         | 63459-05-1            | 63460-05-1      | 63461-05-1          | 63465-1                    |
| 100        | 63459-06-1            | 63460-06-1      | 63461-06-1          | 63465-1                    |

#### NOTES:

- 1) \*Kits ship with cylinder mounting hardware.
- 2) Rodlok is intended for use only on -H46 cylinder.
- 3) Imperial port adaptor converts port from G1/8 to 1/8" NPT for use with -L9 cylinders or imperial units.
- 4) \*\*Adaptor must be ordered separately. Required to convert to imperial port.

#### **Plumbing Schematic Example:**




The pneumatic schematic above shows typical valving for cylinder and Rodlok for both horizontal and vertical operation. The schematic shows three 3/2 way valves, one for each port on the cylinder and one for the Rodlok port. The use of two valves on the cylinder allows for both ports to be pressurized when valves are de-energized. The use of an in-line regulator allows the cylinder ports to be pressurized at different pressures. This allows the cylinder to balance out the opposing pressure and force of the attached load. Once piston rod motion has stopped, the Rodlok can be engaged by de-energizing its valve and releasing its pressure. The use of check valves and built in PHD Port Controls® is recommended. Pressure switch shown is optional and application specific.



#### **RODLOK DIMENSIONS**

(continued from previous page)



| LETTED        |             |        |        |         |       |        |       | BORE   | SIZE    |         |         |         |         |          |       |          |
|---------------|-------------|--------|--------|---------|-------|--------|-------|--------|---------|---------|---------|---------|---------|----------|-------|----------|
| LETTER<br>DIM | <b>20</b> n | nm     | 25 ו   | mm      | 32 ו  | mm     | 40 ו  | mm     | 50      | mm      | 63      | mm      | 80 ו    | mm       | 100   | mm       |
| DIM           | in          | mm     | in     | mm      | in    | mm     | in    | mm     | in      | mm      | in      | mm      | in      | mm       | in    | mm       |
| A1            | 1.024       | 26.0   | 1.063  | 27.0    | 1.280 | 32.5   | 1.496 | 38.0   | 1.831   | 46.5    | 2.224   | 56.5    | 2.835   | 72.0     | 3.504 | 89.0     |
| A2            | _           | _      | _      | _       | 1.575 | 40.0   | 1.811 | 46.0   | 2.126   | 54.0    | 2.165   | 55.0    | 2.756   | 70.0     | 2.756 | 70.0     |
| A3            | _           | _      | _      | _       | 0.165 | 4.2    | 0.177 | 4.5    | 0.453   | 11.5    | 0.295   | 7.5     | 0.394   | 10.0     | 0.394 | 10.0     |
| A4            | _           | _      | _      | _       | 0.630 | 16.0   | 0.827 | 21.0   | 0.945   | 24.0    | 1.260   | 32.0    | 1.732   | 44.0     | 2.362 | 60.0     |
| В             | 1.457       | 37.0   | 1.575  | 40.0    | 1.890 | 48.0   | 2.205 | 56.0   | 2.677   | 68.0    | 3.228   | 82.0    | 3.937   | 100.0    | 4.724 | 120.0    |
| BE            | M22 >       | < 1.5  | M22    | x 1.5   | _     | _      | _     | _      | _       | _       | _       | _       | _       | _        | _     |          |
| С             | 1.457       | 37.0   | 1.575  | 40.0    | 1.969 | 50.0   | 2.283 | 58.0   | 2.756   | 70.0    | 3.346   | 85.0    | 4.134   | 105.0    | 5.118 | 130.0    |
| D1            | 0.866       | 22.0   | 0.866  | 22.0    | 1.181 | 30.0   | 1.378 | 35.0   | 1.575   | 40.0    | 1.772   | 45.0    | 1.772   | 45.0     | 2.165 | 55.0     |
| D3            | 0.590       | 15.0   | 0.669  | 17.0    | _     | _      | _     |        | _       | _       | _       | _       | _       | _        | _     |          |
| DK            | 0.315       | 8.0    | 0.394  | 10.0    | 0.472 | 12.0   | 0.630 | 16.0   | 0.787   | 20.0    | 0.787   | 20.0    | 0.984   | 25.0     | 0.984 | 25.0     |
| E             | 0.807       | 20.5   | 0.807  | 20.5    | 0.984 | 25.0   | 1.083 | 27.5   | 1.280   | 32.5    | 1.614   | 41.0    | 1.929   | 49.0     | 2.087 | 53.0     |
| F             | 0.728       | 18.5   | 0.787  | 20.0    | 0.984 | 25.0   | 1.142 | 29.0   | 1.378   | 35.0    | 1.673   | 42.5    | 2.067   | 52.5     | 2.559 | 65.0     |
| F2            | M4 x 0.     | 7 x 20 | M4 x 0 | .7 x 20 | M6 x  | 1 x 20 | M6 x  | 1 x 20 | M8 x 1. | 25 x 30 | M8 x 1. | 25 x 30 | M10 x 1 | 1.5 x 30 | M10 x | 1.5 x 30 |
| G1            | M4 x        | 0.7    | M4 >   | k 0.7   | M6    |        | M6    |        | M8 x    |         | M8 x    |         | M10     |          | M10   |          |
| G2            | _           | -      | _      | _       | M     | 15     | M     | 15     | IV      | 16      | IV      | 18      | M       | 18       | IV    | 18       |
| G3            | M5 x        | 8.0    | M5 >   | k 0.8   | G 1   | /8*    | G 1   | /8*    | G 1     | /8*     | G 1     | /8*     | G 1     | /8*      | G 1   | /8*      |
| H1            | 2.775       | 70.5   | 2.854  | 72.5    | 3.524 | 89.5   | 3.856 | 97.9   | 4.645   | 118.0   | 5.256   | 133.5   | 6.732   | 171.0    | 7.441 | 189.0    |
| L1            | 0.354       | 9.0    | 0.315  | 8.0     | 0.315 | 8.0    | 0.394 | 10.0   | 0.591   | 15.0    | 0.591   | 15.0    | 0.630   | 16.0     | 0.630 | 16.0     |
| L3            | 0.354       | 9.0    | 0.315  | 8.0     | 0.473 | 12.0   | 0.472 | 12.0   | 0.630   | 16.0    | 0.590   | 15.0    | 0.630   | 16.0     | 0.709 | 18.0     |
| L5            | 1.575       | 40.0   | 1.732  | 44.0    | 1.890 | 48.0   | 2.165 | 55.0   | 2.756   | 70.0    | 2.756   | 70.0    | 3.543   | 90.0     | 3.622 | 92.0     |
| L6            | 2.244       | 57.0   | 2.480  | 63.0    | 2.283 | 58.0   | 2.559 | 65.0   | 3.228   | 82.0    | 3.228   | 82.0    | 4.331   | 110.0    | 4.528 | 115.0    |
| L7            | 1.142       | 29.0   | 1.220  | 31.0    | 1.260 | 32.0   | 1.398 | 35.5   | 1.929   | 49.0    | 1.929   | 49.0    | 2.441   | 62.0     | 2.559 | 65.0     |
| L8            | 0.433       | 11.0   | 0.512  | 13.0    | 0.630 | 16.0   | 0.768 | 19.5   | 0.827   | 21.0    | 0.827   | 21.0    | 1.102   | 28.0     | 1.063 | 27.0     |
| L10           |             |        | _      |         | 0.315 | 8.0    | 0.394 | 10.0   | 0.472   | 12.0    | 0.472   | 12.0    | 0.630   | 16.0     | 0.630 | 16.0     |
| L11           | 2.520       | 64.0   | 2.835  | 72.0    | 2.913 | 74.0   | 3.346 | 85.0   | 4.213   | 107.0   | 4.213   | 107.0   | 5.354   | 136.0    | 5.630 | 143.0    |
| WH            | 0.945       | 24.0   | 1.102  | 28.0    | 1.024 | 26.0   | 1.181 | 30.0   | 1.457   | 37.0    | 1.457   | 37.0    | 1.811   | 46.0     | 2.008 | 51.0     |

#### NOTES:

- 1) -H47 units have Rodlok port aligned with cylinder port on extend.
- 2) All dimensions not noted are standard. See pages 43 and 44 for complete cylinder dimensions.
- 3) \* = Port supplied on Rodlok device, requires port adaptor from previous page to convert to 1/8 NPT.



#### NPT PORTS (Metric Units) ⊕

This option provides NPT ports instead of the standard G (BSPP) ports. The NPT ports are located in the same location as the G (BSPP) ports.



# BSPP PORTS (Imperial Units)

This option provides G (BSPP) ports instead of the standard NPT ports. The G (BSPP) ports are located in the same location as the NPT ports.

| <b>①</b> | This option does not dimensionally comply with the |
|----------|----------------------------------------------------|
|          | SO 6431/VDMA 24562 or ISO 6432 specifications.     |

| BORE (mm) | IMPERIAL NPT PORT | METRIC BSPP PORT |
|-----------|-------------------|------------------|
| 20        | 1/8*              | G 1/8*           |
| 25        | 1/8*              | G 1/8*           |
| 32        | 1/8               | G 1/8            |
| 40        | 1/4               | G 1/4            |
| 50        | 1/4               | G 1/4            |
| 63        | 3/8               | G 3/8            |
| 80        | 3/8               | G 3/8            |
| 100       | 1/2               | G 1/2            |

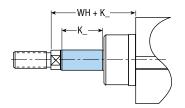
<sup>\*</sup>When Port Controls® (-PB, -PR, -PE) are specified on the same face as port, the ports change to M5 on metric and 10-32 on imperial.





#### **EXTRA ROD EXTENSION ①**

Extra rod extension can be achieved by specifying the option -K followed by the length code. Rod extension is available in 1/8" or 5 mm increments. If this option is specified on double rod units, both rod ends will be supplied with the same extra rod extension. Contact PHD for other combinations.


### **Length Code**

**Imperial** Metric K5 = 5/8" extra rod extension

K15 = 1-7/8" extra rod extension

K5 = 5 mm extra rod extension

K15 = 15 mm extra rod extension



① For metric units (CVxx6).

This option does not dimensionally comply with the ISO 6431/VDMA 24562 or ISO 6432 specifications.

| BORE | W     | /H   |
|------|-------|------|
| mm   | in    | mm   |
| 20   | 0.945 | 24.0 |
| 25   | 1.102 | 28.0 |
| 32   | 1.024 | 26.0 |
| 40   | 1.181 | 30.0 |
| 50   | 1.457 | 37.0 |
| 63   | 1.457 | 37.0 |
| 80   | 1.811 | 46.0 |
| 100  | 2.008 | 51.0 |

#### **CORROSION RESISTANT**

By specifying this option, a stainless steel rod with hard chrome plating is supplied in place of the standard hard chrome plated steel material. Appropriate coating is supplied on ferrous parts.

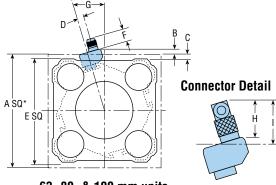


#### **MAGNETIC PISTON FOR PHD MINIATURE REED AND SOLID STATE SWITCHES**

#### **SERIES 6250 SOLID STATE SWITCHES**

| PART NO.   | DESCRIPTION                                | COLOR |
|------------|--------------------------------------------|-------|
| 62505-1-02 | NPN (Sink) DC Solid State, 2 m cable       | Brown |
| 62506-1-02 | PNP (Source) DC Solid State, 2 m cable     | Tan   |
| 62515-1    | NPN (Sink) DC Solid State, Quick Connect   | Brown |
| 62516-1    | PNP (Source) DC Solid State, Quick Connect | Tan   |

NOTE: Switches must be ordered separately. See Switches and Sensors section for complete switch information.


This option equips the cylinder with a magnetic band on the piston for use with PHD Miniature Reed and Solid State Switches listed below. These switches mount easily to the cylinder using "T" slots in the body. Three position units will receive a magnet on both cylinder 1 and cylinder 2 when specified with -M option.

#### **SERIES 6250 REED SWITCHES**

| PART NO.   | DESCRIPTION               | COLOR  |
|------------|---------------------------|--------|
| 62507-1-02 | AC/DC Reed, 2 m cable     | Silver |
| 62517-1    | AC/DC Reed, Quick Connect | Silver |



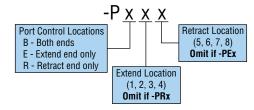
20 & 25 mm units 32, 40, & 50 mm units

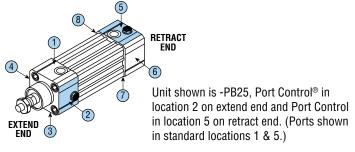


63, 80, & 100 mm units

| LETTED        |             |      |       |      |       |      |       | BORE | SIZE  |      |       |      |       |       |       |       |
|---------------|-------------|------|-------|------|-------|------|-------|------|-------|------|-------|------|-------|-------|-------|-------|
| LETTER<br>DIM | <b>20</b> n | nm   | 25 :  | mm   | 32 :  | mm   | 40 :  | mm   | 50    | mm   | 63 :  | mm   | 80    | mm    | 100   | mm    |
| DIIVI         | in          | mm   | in    | mm   | in    | mm   | in    | mm   | in    | mm   | in    | mm   | in    | mm    | in    | mm    |
| A*            | 1.339       | 34.0 | 1.339 | 34.0 | 1.969 | 50.0 | 2.283 | 58.0 | 2.756 | 70.0 | 3.346 | 85.0 | 4.134 | 105.0 | 5.118 | 130.0 |
| В             | 0.343       | 8.7  | 0.441 | 11.2 | 0.276 | 7.0  | 0.197 | 5.0  | 0.236 | 6.0  | 0.236 | 6.0  | 0.157 | 4.0   | 0.020 | 0.5   |
| С             | 0.283       | 7.2  | 0.323 | 8.2  | 0.295 | 7.5  | 0.256 | 6.5  | 0.276 | 7.0  | 0.335 | 8.5  | 0.295 | 7.5   | 0.315 | 8.0   |
| D             | 0.236       | 6.0  | 0.236 | 6.0  | 0.236 | 6.0  | 0.236 | 6.0  | 0.236 | 6.0  | 0.236 | 6.0  | 0.236 | 6.0   | 0.236 | 6.0   |
| Е             | 1.457       | 37.0 | 1.575 | 40.0 | 1.949 | 49.5 | 2.205 | 56.0 | 2.697 | 68.5 | 3.150 | 80.0 | 3.858 | 98.0  | 4.528 | 115.0 |
| F             | 0.374       | 9.5  | 0.374 | 9.5  | 0.374 | 9.5  | 0.374 | 9.5  | 0.374 | 9.5  | 0.374 | 9.5  | 0.374 | 9.5   | 0.374 | 9.5   |
| G             | _           | _    | _     | _    | _     | _    | _     | _    | _     | _    | 17°   | 17°  | 20°   | 20°   | 24°   | 24°   |
| Н             | 0.870       | 22.1 | 0.870 | 22.1 | 0.870 | 22.1 | 0.870 | 22.1 | 0.870 | 22.1 | 0.831 | 21.1 | 0.819 | 20.8  | 0.795 | 20.2  |
| 1             | 1.213       | 30.8 | 1.311 | 33.3 | 1.146 | 29.1 | 1.087 | 27.6 | 1.106 | 28.1 | 1.059 | 26.9 | 0.965 | 24.5  | 0.811 | 20.6  |

NOTE: \*ISO/VDMA max square size

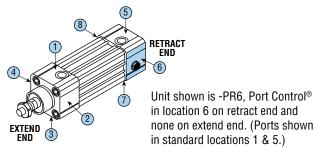


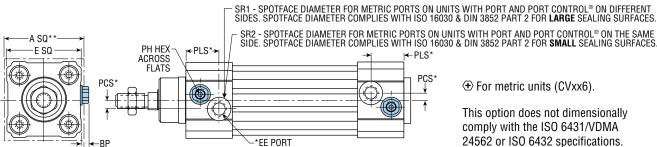


PB PORT CONTROLS® ON BOTH ENDS (standard location 1 & 5, see note) ®

PE PORT CONTROLS® ON EXTEND ONLY (standard location 1, not available on 3 position units) ⊕

PORT CONTROLS® ON RETRACT ONLY (standard location 5, not available on 3 position units) ①

#### PORT CONTROL OPTIONS




PHD's Port Control® is a built-in flow control for regulating the speed of the cylinder through its entire stroke. The Port Control operates on the "meter-out" principle and features an adjustable needle in a cartridge with a check seal. The self-locking needle has micrometer threads and is adjustable under pressure. The needle determines the orifice size which controls the exhaust flow rate of the actuator. The check seal expands while air is exhausting from the actuator, forcing the air to exhaust past the adjustable needle. The check seal collapses to allow a free flow of incoming air. The PHD Port Control saves space and eliminates the cost of fittings and installation for external flow control valves. See engineering data for cylinder speeds with PHD's Port Controls. Refer to option code below to specify port control locations. Three position port control locations are 1 and 5 only and will receive a control on the head, intermediate head, and cap.

**NOTE:** Port Controls are not available on same end which has -UB0x or -UBx0 (four ports) specified. Port Controls on 3 position units are available only with -PB option in locations 1 and 5 only.

For 32, 40, 50, and 63 mm, the Port Control extends beyond VDMA specified square size. See dimension BP.





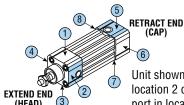
| LETTED        |             |      |       |      |         |      |         | BORI | SIZE    |      |         |      |         |       |         |       |
|---------------|-------------|------|-------|------|---------|------|---------|------|---------|------|---------|------|---------|-------|---------|-------|
| LETTER<br>DIM | <b>20</b> n | nm   | 25 n  | nm   | 32 mm   |      | 40 n    | nm   | 50 m    | nm   | 63 n    | ım   | 80 n    | nm    | 100     | mm    |
| DIIVI         | in          | mm   | in    | mm   | in      | mm   | in      | mm   | in      | mm   | in      | mm   | in      | mm    | in      | mm    |
| A**           | 1.339       | 34.0 | 1.339 | 34.0 | 1.969   | 50.0 | 2.283   | 58.0 | 2.756   | 70.0 | 3.346   | 85.0 | 4.134   | 105.0 | 5.118   | 130.0 |
| BP            | 0.125       | 3.2  | 0.153 | 3.9  | 0.177   | 4.5  | 0.240   | 6.1  | 0.110   | 2.8  | 0.201   | 5.1  | 0.134   | 3.4   | 0.20    | 55.2  |
| CP            | 0.184       | 4.7  | 0.271 | 6.9  | 0.169   | 4.3  | 0.201   | 5.1  | 0.083   | 2.1  | 0.102   | 2.6  | -0.004  | -0.1  | -0.091  | -2.3  |
| Е             | 1.457       | 37.0 | 1.575 | 40.0 | 1.949   | 49.5 | 2.205   | 56.0 | 2.697   | 68.5 | 3.150   | 80.0 | 3.858   | 98.0  | 4.528   | 115.0 |
| EE*           | 10-32       | M5   | 10-32 | M5   | 1/8 NPT | G1/8 | 1/4 NPT | G1/4 | 1/4 NPT | G1/4 | 3/8 NPT | G3/8 | 3/8 NPT | G3/8  | 1/2 NPT | G1/2  |
| PCS*          | 0.276       | 7.0  | 0.276 | 7.0  | 0.197   | 5.0  | 0.236   | 6.0  | 0.236   | 6.0  | 0.449   | 11.4 | 0.512   | 13.0  | 0.906   | 23.0  |
| PH            | _           | 2.5  | _     | 2.5  | _       | 2.5  | _       | 2.5  | _       | 2.5  | _       | 3.0  | _       | 3.0   | _       | 6.0   |
| PLS*          | 0.571       | 14.5 | 0.571 | 14.5 | 0.866   | 22.0 | 0.925   | 23.5 | 0.906   | 23.0 | 0.984   | 25.0 | 1.024   | 26.0  | 1.142   | 29.0  |
| SR1           | _           | 16.5 | _     | 16.5 | _       | 19.0 | _       | 25.0 | _       | 25.0 | _       | 28.0 | _       | 28.0  | _       | 34.0  |
| SR2           | 0.354       | 9.0  | 0.354 | 9.0  | _       | 16.5 | _       | 19.0 | _       | 19.0 | _       | 23.0 | _       | 23.0  | _       | 27.0  |

#### NOTES

2) \*\*VDMA max square size

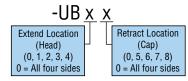


<sup>1) \*</sup>Port dimensions shown are for units with port and Port Control® in the same location. For units with other port and Port Control® combinations, standard port size and location dimensions apply. Ports may be located on either side of the cylinder centerline depending on Port Control® and cushion option combinations. in = Table information for imperial ports mm = Table information for metric ports


EXTEND END

(HEAD)

# **UB**

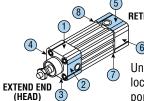

#### ALTERNATE PORT LOCATION (not available on 3 position units)

With this option, alternate port locations can be specified, providing increased flexibility and customer convenience. See option code below to specify port locations. Three position units available with ports in standard locations 1 and 5 only.



Unit shown is -UB25, port in location 2 on extend end and port in location 5 on retract end.

#### PORT LOCATION OPTIONS




RETRACT END



PORTS ON ALL 4 SIDES (0 IN PORT OPTION CODE) NOT AVAILABLE WITH PHD PORT CONTROLS ON SAME END

Unit shown is -UB10, port in location 1 on extend end, and ports on all 4 sides on retract end. (Not available with PHD port controls on retract.)



#### FEMALE ROD END ®

This option provides a female rod end in place of the standard male rod end. See catalog dimensional pages for standard rod ends. This rod end deviates from ISO 6431/VDMA 24562 or ISO 6432 on metric units (CVxx6).

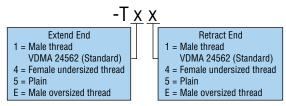
Double rod units will receive the same rod end on both rods unless otherwise specified as shown in the double rod option description.

# T55

T44

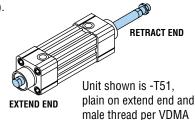
#### PLAIN ROD END

This option provides a plain rod end with wrench flats. Standard PHD Series CV Cylinders are supplied with a male rod end. This rod end deviates from ISO 6431/VDMA 24562 or ISO 6432 on metric units (CVxx6).

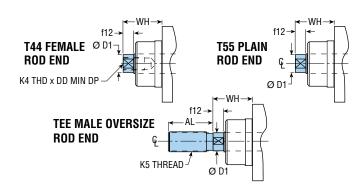

Double rod units will receive the same rod end on both rods unless otherwise specified as shown in the double rod option description.



#### MALE OVERSIZE ROD END • (N/A on 20 & 25 mm bores)


This option provides a male oversize thread rod end in place of the standard male rod end. See catalog dimensional pages for standard rod ends. Double rod units will receive the same rod end on both rods unless otherwise specified as shown in the double rod option description.

#### DOUBLE ROD END OPTIONS




① For metric units (CVxx6).

This option does not dimensionally comply with the ISO 6431/VDMA 24562 or ISO 6432 specifications.

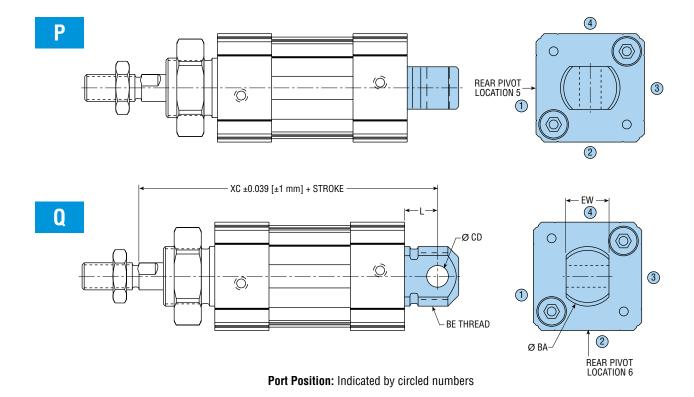


24562 on retract end.



| LETTED        |        |          |        |          |         |            | BORE SIZE |           |        |            |        |            |        |           |        |           |  |
|---------------|--------|----------|--------|----------|---------|------------|-----------|-----------|--------|------------|--------|------------|--------|-----------|--------|-----------|--|
| LETTER<br>DIM | 20     | mm       | 25 mm  |          | 32 mm   |            | 40 mm     |           |        | 50 mm      | (      | 63 mm      | 8      | 0 mm      | 10     | 00 mm     |  |
| DIM           | in     | mm       | in     | mm       | in      | mm         | in        | mm        | in     | mm         | in     | mm         | in     | mm        | in     | mm        |  |
| AL            | _      | _        | _      | _        | 0.827   | 21.0       | 0.906     | 23.0      | 1.220  | 31.0       | 1.220  | 31.0       | 1.535  | 39.0      | 1.535  | 39.0      |  |
| D1            | 0.315  | 8.00     | 0.375* | 9.53*    | 0.447   | 11.35      | 0.599     | 15.22     | 0.757  | 19.23      | 0.757  | 19.23      | 0.954  | 24.23     | 0.954  | 24.23     |  |
| f12           | 0.196  | 5.0      | 0.236  | 6.0      | 0.236   | 6.0        | 0.256     | 6.5       | 0.315  | 8.0        | 0.315  | 8.0        | 0.394  | 10.0      | 0.394  | 10.0      |  |
| K4            | #10-32 | M5 x 0.8 | 1/4-28 | M6 x 1.0 | 5/16-24 | M8 x 1.25  | 7/16-20   | M10 x 1.5 | 1/2-20 | M12 x 1.75 | 1/2-20 | M12 x 1.75 | 5/8-11 | M16 x 2.0 | 5/8-11 | M16 x 2.0 |  |
| K5            | _      | _        | _      | _        | 7/16-20 | M12 x 1.25 | 5/8-18    | M16 x 1.5 | 3/4-16 | M20 x 1.5  | 3/4-16 | M20 x 1.5  | 1-12   | M24 x 3   | 1-12   | M24 x 3   |  |
| DD min        | 0.413  | 10.5     | 0.492  | 12.5     | 0.551   | 14.0       | 0.669     | 17.0      | 0.748  | 19.0       | 0.748  | 19.0       | 0.827  | 21.0      | 0.827  | 21.0      |  |
| WH            | 0.945  | 24.0     | 1.102  | 28.0     | 1.024   | 26.0       | 1.181     | 30.0      | 1.457  | 37.0       | 1.457  | 37.0       | 1.811  | 46.0      | 2.008  | 51.0      |  |

<sup>\*</sup>Dimension shown is for -T44 rod end only. -T55 option dimension is 0.394 in [10.0 mm].

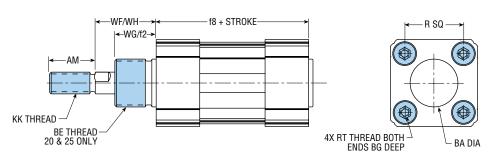





#### **PIVOT MOUNT ON SIZES 20 & 25 ONLY**

This style specifies a pivot mount cap. This style conforms to ISO 6432 customer interface and overall unit length on metric units (CVxx6) when specified with optional -P or -Q mounting. Pivot pins and base mounting brackets are available, see mounting accessories.

| LETTER DIM/              |       | BORE  | SIZE  |       |
|--------------------------|-------|-------|-------|-------|
| LETTER DIM/<br>TOLERANCE | 20    | mm    | 25    | mm    |
| TOLLITANOL               | in    | mm    | in    | mm    |
| BA                       | 0.866 | 22.0  | 0.866 | 22.0  |
| В                        | M22   | x 1.5 | M22   | x 1.5 |
| CD/H9                    | 0.315 | 8.0   | 0.315 | 8.0   |
| EW/d13                   | 0.630 | 16.0  | 0.630 | 16.0  |
| L MIN                    | 0.472 | 12.0  | 0.472 | 12.0  |
| XC CVB                   | 4.055 | 103.0 | 4.330 | 110.0 |
| XC CVC                   | 3.740 | 95.0  | 4.094 | 104.0 |






# MOUNTING STYLES: Series CV Cylinders



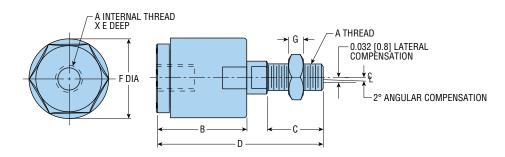




| LETTER DIM/ |             |              |        |               |        |               |        | BORE          | SIZE   |              |        |              |        |              |        |              |
|-------------|-------------|--------------|--------|---------------|--------|---------------|--------|---------------|--------|--------------|--------|--------------|--------|--------------|--------|--------------|
| TOLERANCE   | <b>20</b> r | nm           | 25     | mm            | 32     | mm            | 40 ı   | mm            | 50     | mm           | 63     | mm           | 80     | mm           | 100    | mm           |
| TOLLITANOL  | in          | mm           | in     | mm            | in     | mm            | in     | mm            | in     | mm           | in     | mm           | in     | mm           | in     | mm           |
| AM          | 0.748       | 19.0         | 0.827  | 21.0          | 0.827  | 21.0          | 0.906  | 23.0          | 1.220  | 31.0         | 1.220  | 31.0         | 1.535  | 39.0         | 1.535  | 39.0         |
| BA          | 0.864       | 21.9         | 0.864  | 21.9          | 1.178  | 29.9          | 1.374  | 34.9          | 1.571  | 40.0         | 1.768  | 44.9         | 1.768  | 44.9         | 2.161  | 55.0         |
| BE          | M22 :       | x 1.5        | M22    | x 1.5         | _      | _             | _      | _             | _      | _            | _      | _            | _      | _            | _      |              |
| BG min      | 0.472       | 12.0         | 0.472  | 12.0          | 0.709  | 18.0          | 0.709  | 18.0          | 0.787  | 20.0         | 0.787  | 20.0         | 0.787  | 20.0         | 0.787  | 20.0         |
| f8 CVA      | _           | _            | _      | _             | 3.702  | 94.0          | 4.133  | 105.0         | 4.173  | 106.0        | 4.764  | 121.0        | 5.039  | 128.0        | 5.434  | 138.0        |
| f8 CVB      | 2.637       | 67.0         | 2.755  | 70.0          | _      | _             | _      | _             | _      | _            | _      | _            | _      | _            | _      | _            |
| f8 CVC      | 2.323       | 59.0         | 2.520  | 64.0          | _      | _             | _      | _             | _      | _            | _      | _            | _      | _            | _      | _            |
| KK          | 5/16-24     | M8 x<br>1.25 | 3/8-24 | M10 x<br>1.25 | 3/8-24 | M10 x<br>1.25 | 1/2-20 | M12 x<br>1.25 | 5/8-18 | M16 x<br>1.5 | 5/8-18 | M16 x<br>1.5 | 3/4-16 | M20 x<br>1.5 | 3/4-16 | M20 x<br>1.5 |
| R           | 1.024       | 26.0         | 1.063  | 27.0          | 1.280  | 32.5          | 1.496  | 38.0          | 1.831  | 46.5         | 2.224  | 56.5         | 2.835  | 72.0         | 3.504  | 89.0         |
| RT          | M4 x        | 0.7          | M4 :   | < 0.7         | M6     | x 1           | M6     | x 1           | M8 x   | 1.25         | M8 x   | 1.25         | M10    | x 1.5        | M10    | x 1.5        |
| WF          | 0.945       | 24.0         | 1.102  | 28.0          | _      | _             | _      | _             | _      | _            | _      | _            | _      | _            | _      |              |
| WH          | _           | _            | _      | _             | 1.024  | 26.0          | 1.181  | 30.0          | 1.457  | 37.0         | 1.457  | 37.0         | 1.811  | 46.0         | 2.008  | 51.0         |
| WG          | 0.669       | 17.0         | 0.748  | 19.0          | _      | _             | _      | _             | _      | _            | _      | _            | _      | _            | _      |              |
| f2          | _           | -            | _      | _             | 0.729  | 18.5          | 0.802  | 20.4          | 1.084  | 27.5         | 1.084  | 27.5         | 1.316  | 33.4         | 1.438  | 36.5         |



#### **SELF-ALIGNING PISTON ROD COUPLERS - METRIC**




To order, specify the model number.

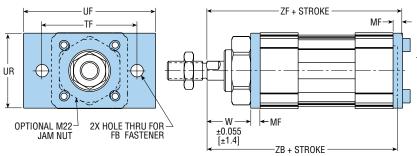


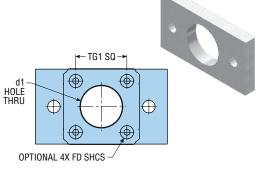
#### **BENEFITS**

- Rod Couplers eliminate expensive precision machining for mounting fixed or rigid cylinder on guide or slide applications.
- Cylinder efficiency is increased by eliminating friction caused by misalignment. Couplers compensate for 2° angular error and 1/32" [0.8 mm] lateral misalignment on push and pull stroke.
- Couplers provide greater reliability and reduce cylinder and component wear, simplifying alignment problems in the field
- Rod Couplers are manufactured from high tensile and hardened steel components.



| MODEL    | NO     |                        |                | L               | ETTER DI        | MENSION         |                 |          |                 | C        | I       |
|----------|--------|------------------------|----------------|-----------------|-----------------|-----------------|-----------------|----------|-----------------|----------|---------|
| MODEL    | - NU.  | Α                      | B MIN          | C MIN           | D MIN           | Е               | F               | G        |                 | CYLINDE  | R BORE* |
| IMPERIAL | METRIC | A                      | D IVIIIV       | CIVIIN          | DIVIIN          | _               | F               | IMPERIAL | METRIC          | IMPERIAL | METRIC  |
| 312      | M8     | 5/16-24<br>[M8 x 1.25] | 1.00<br>[25.4] | 0.625<br>[15.9] | 1.875<br>[47.6] | 0.50<br>[12.7]  | 0.875<br>[22.2] | 0.187    | 0.197<br>[5.0]  | 20       | 20      |
| 375      | M10    | 3/8-24<br>[M10 x 1.25] | 1.00<br>[25.4] | 0.625<br>[15.9] | 1.875<br>[47.6] | 0.50<br>[12.7]  | 0.875<br>[22.2] | 0.219    | 0.197<br>[5.0]  | 25, 32   | 25, 32  |
| 437      | _      | 7/16-20                | 1.13           | 0.650           | 2.187           | 0.50            | 1.0             | 0.250    |                 | _        | _       |
| 500      | M12    | 1/2-20<br>[M12 x 1.25] | 1.13<br>[28.6] | 0.650<br>[16.5] | 2.187<br>[55.5] | 0.50<br>[12.7]  | 1.0<br>[25.4]   | 0.312    | 0.236<br>[6.0]  | 40       | 40      |
| 625      | M16    | 5/8-18<br>[M16 x 1.5]  | 1.75<br>[44.5] | 1.125<br>[28.5] | 3.312<br>[84.1] | 0.812<br>[20.6] | 1.562<br>[39.7] | 0.375    | 0.314<br>[8.0]  | 50, 63   | 50, 63  |
| 750      | M20    | 3/4-16<br>[M20 x 1.5]  | 1.75<br>[44.5] | 1.125<br>[28.5] | 3.312<br>[84.1] | 0.812<br>[20.6] | 1.562<br>[39.7] | 0.421    | 0.394<br>[10.0] | 80, 100  | 80, 100 |

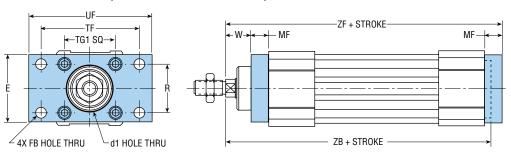

#### NOTES


- 1) NUMBERS IN [ ] ARE mm. IMPERIAL EQUIVALENTS ARE PROVIDED FOR CONVENIENCE.
- 2) \*UNITS SHOWN ARE WITH STANDARD ROD ENDS. OPTIONAL ROD ENDS MAY USE OTHER MODEL NUMBERS.



### RECTANGULAR FLANGE MOUNTING KIT

SIZES 20 & 25 mm (MF8 PER ISO 6432)






| LETTED DIM /              |        | BORE    | SIZE   |         |
|---------------------------|--------|---------|--------|---------|
| LETTER DIM /<br>Tolerance | 20     | mm      | 25     | mm      |
| TOLLHANGE                 | in     | mm      | in     | mm      |
| d1/H11                    | 0.890  | 22.6    | 0.890  | 22.6    |
| FB/H13                    | M6 >   | x 1.0   | M6 :   | x 1.0   |
| FD                        | M4 x 0 | .7 x 18 | M4 x 0 | .7 x 18 |
| TG1                       | 1.024  | 26.0    | 1.063  | 27.0    |
| MF                        | 0.197  | 5.0     | 0.197  | 5.0     |
| TF/JS14                   | 1.969  | 50.0    | 1.969  | 50.0    |
| UF max                    | 2.756  | 70.0    | 2.756  | 70.0    |
| UR max                    | 1.575  | 40.0    | 1.575  | 40.0    |
| W                         | 0.748  | 19.0    | 0.906  | 23.0    |
| ZB max (CVB)              | 3.504  | 89.0    | 3.858  | 98.0    |
| ZF (CVB)                  | 3.701  | 94.0    | 4.055  | 103.0   |
| ZB max (CVC)              | 3.189  | 81.0    | 3.622  | 92.0    |
| ZF (CVC)                  | 3.386  | 86.0    | 3.819  | 97.0    |
| Kit No.                   | 52484  | 1-07-1  | 52484  | I-07-1  |
| -Z1 Kit No.               | 52484  | 1-07-3  | 52484  | 1-07-3  |

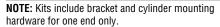
**NOTE:** Kits include flange and cylinder mounting hardware for one end only.

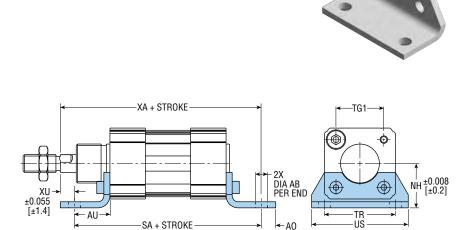
#### SIZES 32 - 100 mm (MF1/MF2 PER VDMA 24562)



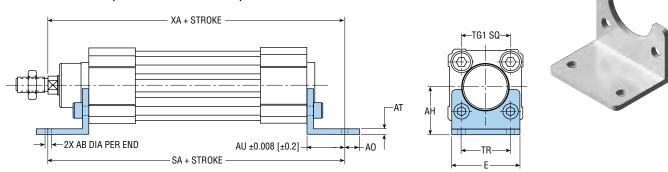


| LETTED DIM /              |       |        |       |        |         | BORE    | SIZE    |         |         |          |         |          |
|---------------------------|-------|--------|-------|--------|---------|---------|---------|---------|---------|----------|---------|----------|
| LETTER DIM /<br>Tolerance | 32    | mm     | 40    | mm     | 50      | mm      | 63      | mm      | 80      | mm       | 100     | mm       |
| TOLLNANGL                 | in    | mm     | in    | mm     | in      | mm      | in      | mm      | in      | mm       | in      | mm       |
| d1/H11                    | 1.184 | 30.1   | 1.381 | 35.0   | 1.578   | 40.1    | 1.775   | 46.1    | 1.775   | 45.1     | 2.169   | 55.0     |
| FB/H13                    | 0.265 | 7.0    | 0.346 | 8.8    | 0.346   | 8.8     | 0.346   | 8.8     | 0.448   | 11.4     | 0.527   | 14.0     |
| TG1                       | 1.280 | 32.5   | 1.496 | 38.0   | 1.831   | 46.5    | 2.224   | 56.5    | 2.835   | 72.0     | 3.504   | 89.0     |
| E max                     | 1.968 | 50.0   | 2.284 | 58.0   | 2.756   | 70.0    | 3.347   | 85.0    | 4.134   | 105.0    | 5.118   | 130.0    |
| R/JS14                    | 1.260 | 32.0   | 1.417 | 36.0   | 1.772   | 45.0    | 1.969   | 50.0    | 2.480   | 63.0     | 2.953   | 75.0     |
| MF                        | 0.394 | 10.0   | 0.394 | 10.0   | 0.472   | 12.0    | 0.472   | 12.0    | 0.630   | 16.0     | 0.630   | 16.0     |
| TF/JS14                   | 2.520 | 64.0   | 2.835 | 72.0   | 3.543   | 90.0    | 3.937   | 100.0   | 4.961   | 126.0    | 5.906   | 150.0    |
| UF max                    | 3.386 | 86.0   | 3.780 | 96.0   | 4.528   | 115.0   | 5.118   | 130.0   | 6.496   | 165.0    | 7.362   | 187.0    |
| Fastener                  | M6 x  | 1 x 20 | M6 x  | 1 x 20 | M8 x 1. | 25 x 20 | M8 x 1. | 25 x 20 | M10 x 1 | .25 x 25 | M10 x 1 | .25 x 25 |
| W                         | 0.630 | 16.0   | 0.787 | 20.0   | 0.984   | 25.0    | 0.984   | 25.0    | 1.181   | 30.0     | 1.378   | 35.0     |
| ZB max                    | 4.882 | 124.0  | 5.591 | 142.0  | 5.866   | 149.0   | 6.496   | 165.0   | 7.165   | 182.0    | 7.795   | 198.0    |
| ZF                        | 5.118 | 130.0  | 5.709 | 145.0  | 6.102   | 155.0   | 6.693   | 170.0   | 7.480   | 190.0    | 8.071   | 205.0    |
| Kit No.                   | 52484 | I-01-1 | 52484 | I-02-1 | 52484   | I-03-1  | 52484   | I-04-1  | 52484   | 1-05-1   | 52484   | 4-06-1   |
| -Z1 Kit No.               | 52484 | I-01-3 | 52484 | I-02-3 | 52484   | I-03-3  | 52484   | I-04-3  | 52484   | 1-05-3   | 52484   | 4-06-3   |


NOTE: Kits include flange and cylinder mounting hardware for one end only




### BASE MOUNTING KIT


SIZES 20 & 25 mm (MS3 PER ISO 6432)

| LETTED DIM /              |       | BORE   | SIZE       |       |  |
|---------------------------|-------|--------|------------|-------|--|
| LETTER DIM /<br>TOLERANCE | 20    | mm     | 25         | mm    |  |
| TOLLHANGE                 | in    | mm     | in         | mm    |  |
| AB/H13                    | 0.260 | 6.6    | 0.260      | 6.6   |  |
| A0 max                    | 0.315 | 8.0    | 0.315      | 8.0   |  |
| AU max                    | 0.787 | 20.0   | 0.787      | 20.0  |  |
| NH                        | 0.984 | 25.0   | 0.984      | 25.0  |  |
| SA (CVB)                  | 4.211 | 107.0  | 4.329      | 110.0 |  |
| SA (CVC)                  | 3.897 | 99.0   | 4.094      | 104.0 |  |
| TG1                       | 1.024 | 26.0   | 1.063      | 27.0  |  |
| TR/JS14                   | 1.575 | 40.0   | 1.575      | 40.0  |  |
| US max                    | 2.146 | 54.5   | 2.146      | 54.5  |  |
| XA (CVB)                  | 4.370 | 111.0  | 4.645      | 118.0 |  |
| XA (CVC)                  | 4.055 | 103.0  | 4.409      | 112.0 |  |
| XU                        | 0.157 | 4.0    | 0.315      | 8.0   |  |
| Kit No.                   | 52487 | 7-07-1 | 52487-07-1 |       |  |
| -Z1 Kit No.               | 52487 | 7-07-3 | 52487-07-3 |       |  |

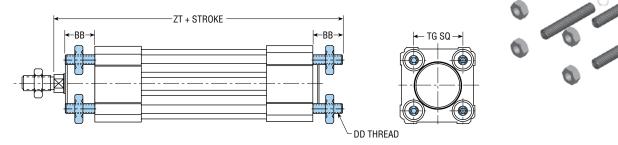




#### SIZES 32 - 100 mm (MS1 PER VDMA 24562)



| LETTED DIM /              |       |        |       |        |         | BORE    | SIZE    |         |       |          |       |          |
|---------------------------|-------|--------|-------|--------|---------|---------|---------|---------|-------|----------|-------|----------|
| LETTER DIM /<br>Tolerance | 32    | mm     | 40    | mm     | 50      | mm      | 63      | mm      | 80    | mm       | 100   | mm       |
| TOLLNANGL                 | in    | mm     | in    | mm     | in      | mm      | in      | mm      | in    | mm       | in    | mm       |
| AB                        | 0.270 | 6.9    | 0.369 | 9.37   | 0.369   | 9.37    | 0.369   | 9.37    | 0.449 | 11.41    | 0.538 | 13.66    |
| TG1                       | 1.280 | 32.5   | 1.496 | 38.0   | 1.831   | 46.5    | 2.224   | 56.5    | 2.835 | 72.0     | 3.504 | 89.0     |
| E max                     | 1.969 | 50.0   | 2.284 | 58.0   | 2.756   | 70.0    | 3.347   | 85.0    | 4.134 | 105.0    | 5.118 | 130.0    |
| TR                        | 1.260 | 32.0   | 1.417 | 36.0   | 1.772   | 45.0    | 1.969   | 50.0    | 2.480 | 63.0     | 2.953 | 75.0     |
| A0 max                    | 0.433 | 11.0   | 0.591 | 15.0   | 0.591   | 15.0    | 0.591   | 15.0    | 0.787 | 20.0     | 0.984 | 25.0     |
| AU                        | 0.945 | 24.0   | 1.102 | 28.0   | 1.260   | 32.0    | 1.260   | 32.0    | 1.614 | 41.0     | 1.614 | 41.0     |
| AH                        | 1.260 | 32.0   | 1.417 | 36.0   | 1.772   | 45.0    | 1.969   | 50.0    | 2.480 | 63.0     | 2.795 | 71.0     |
| AT                        | 0.177 | 4.5    | 0.177 | 4.5    | 0.217   | 5.5     | 0.217   | 5.5     | 0.256 | 6.5      | 0.256 | 6.5      |
| SA                        | 5.592 | 142.0  | 6.337 | 161.0  | 6.693   | 170.0   | 7.284   | 185.0   | 8.267 | 210.0    | 8.662 | 220.0    |
| XA                        | 5.669 | 144.0  | 6.417 | 163.0  | 6.890   | 175.0   | 7.480   | 190.0   | 8.465 | 215.0    | 9.055 | 230.0    |
| Fastener                  | M6 x  | 1 x 20 | M6 x  | 1 x 20 | M8 x 1. | 25 x 25 | M8 x 1. | 25 x 25 | M10 x | 1.5 x 25 | M10 x | 1.5 x 25 |
| Kit No.                   | 52487 | '-01-1 | 52487 | '-02-1 | 52487   | '-03-1  | 52487   | 7-04-1  | 52487 | 7-05-1   | 52487 | 7-06-1   |
| -Z1 Kit No.               | 52487 | '-01-3 | 52487 | 7-02-3 | 52487   | '-03-3  | 52487   | 7-04-3  | 52487 | 7-05-3   | 52487 | 7-06-3   |

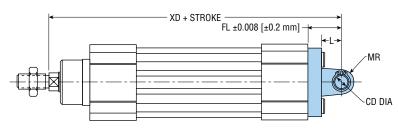

NOTE: Kits include bracket and cylinder mounting hardware for one end only

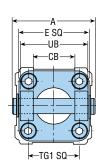


#### **FASTENER MOUNTING KIT**

SIZES 20 & 25 mm (MX1)

**SIZES 32 - 100 mm (MX1 PER ISO 6431)** 





| LETT        | TD. |       |                   |       |        |          |        |       | BORE  | SIZE  |        |       |       |       |        |       |        |
|-------------|-----|-------|-------------------|-------|--------|----------|--------|-------|-------|-------|--------|-------|-------|-------|--------|-------|--------|
| LETT<br>DIN |     | 20 ו  | mm                | 25 mm |        | 32 mm    |        | 40 mm |       | 50 ı  | mm     | 63 ו  | nm    | 80    | mm     | 100   | mm     |
| Dill        | 1   | in    | mm                | in    | mm     | in       | mm     | in    | mm    | in    | mm     | in    | mm    | in    | mm     | in    | mm     |
| BB m        | nin | 0.512 | 13.0              | 0.512 | 13.0   | 0.669    | 17.0   | 0.669 | 17.0  | 0.906 | 23.0   | 0.906 | 23.0  | 1.102 | 28.0   | 1.102 | 28.0   |
| DD          | )   | M4 >  | M4 x 0.7 M4 x 0.7 |       | k 0.7  | M6 x 1.0 |        | M6 >  | (1.0  | M8 x  | 1.25   | M8 x  | 1.25  | M10   | x 1.5  | M10   | x 1.5  |
| ZT (C'      | VA) | _     | _                 | _     | _      | 5.394    | 137.0  | 5.984 | 152.0 | 6.535 | 166.0  | 7.126 | 181.0 | 7.953 | 202.0  | 8.543 | 217.0  |
| ZT (C'      | VB) | 4.095 | 104.0             | 4.370 | 111.0  | _        | _      | _     | _     | _     | _      | _     | _     | _     | _      | _     | _      |
| ZT (C'      | VC) | 3.780 | 96.0              | 4.134 | 105.0  | _        | _      | _     | _     | _     | _      | _     | _     | _     | _      | _     | _      |
| TG          | ì   | 1.024 | 26.0              | 1.063 | 27.0   | 1.280    | 32.5   | 1.496 | 38.0  | 1.831 | 46.5   | 2.224 | 56.5  | 2.835 | 72.0   | 3.504 | 89.0   |
| Kit N       | lo. | 63480 | )-04-1            | 63480 | )-04-1 | 63480    | )-01-1 | 63480 | -01-1 | 63480 | )-02-1 | 63480 | -02-1 | 63480 | )-03-1 | 63480 | )-03-1 |
| -Z1 Kit     | No. | 63480 | )-04-3            | 63480 | )-04-3 | 63480    | 0-01-3 | 63480 | -01-3 | 63480 | )-02-3 | 63480 | -02-3 | 63480 | )-03-3 | 63480 | )-03-3 |

**NOTE:** Kit includes cylinder mounting hardware for one end only.

#### **REAR FORK MOUNTING KIT**

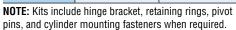
SIZES 32 - 100 mm (MP2 PER VDMA 24562)



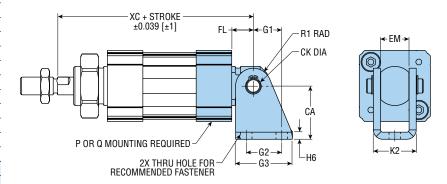




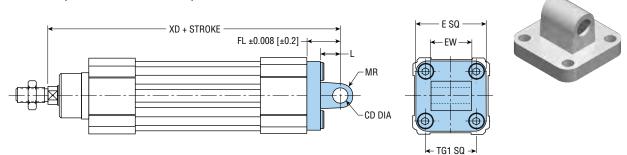
| LETTED DIM /              |       |        |       |        |         | BORE    | SIZE    |         |       |          |       |          |
|---------------------------|-------|--------|-------|--------|---------|---------|---------|---------|-------|----------|-------|----------|
| LETTER DIM /<br>Tolerance | 32    | mm     | 40    | mm     | 50      | mm      | 63 ו    | mm      | 80    | mm       | 100   | mm       |
| TOLLNANGL                 | in    | mm     | in    | mm     | in      | mm      | in      | mm      | in    | mm       | in    | mm       |
| A max                     | 2.559 | 65.0   | 2.839 | 72.1   | 3.149   | 80.0    | 3.739   | 95.0    | 4.529 | 115.0    | 5.319 | 135.1    |
| E max                     | 1.968 | 50.0   | 2.284 | 58.0   | 2.756   | 70.0    | 3.346   | 85.0    | 4.134 | 105.0    | 5.118 | 130.0    |
| UB/h14                    | 1.759 | 44.7   | 2.033 | 51.6   | 2.348   | 59.6    | 2.741   | 69.6    | 3.526 | 89.6     | 4.314 | 109.6    |
| CB/H14                    | 1.034 | 26.3   | 1.113 | 28.3   | 1.272   | 32.3    | 1.587   | 40.3    | 1.981 | 50.3     | 2.377 | 60.4     |
| TG1                       | 1.280 | 32.5   | 1.496 | 38.0   | 1.831   | 46.5    | 2.224   | 56.5    | 2.835 | 72.0     | 3.504 | 89.0     |
| FL                        | 0.866 | 22.0   | 0.984 | 25.0   | 1.063   | 27.0    | 1.260   | 32.0    | 1.417 | 36.0     | 1.614 | 41.0     |
| L min                     | 0.482 | 12.2   | 0.601 | 15.3   | 0.601   | 15.3    | 0.797   | 20.2    | 0.797 | 20.2     | 0.994 | 25.2     |
| CS/H9                     | 0.394 | 10.0   | 0.473 | 12.0   | 0.473   | 12.0    | 0.631   | 16.0    | 0.631 | 16.0     | 0.789 | 20.0     |
| MR max                    | 0.433 | 11.0   | 0.512 | 13.0   | 0.512   | 13.0    | 0.669   | 17.0    | 0.669 | 17.0     | 0.827 | 21.0     |
| XD                        | 5.591 | 142.0  | 6.299 | 160.0  | 6.693   | 170.0   | 7.480   | 190.0   | 8.268 | 210.0    | 9.055 | 230.0    |
| Fastener                  | M6 x  | 1 x 20 | M6 x  | 1 x 20 | M8 x 1. | 25 x 20 | M8 x 1. | 25 x 20 | M10 x | 1.5 x 25 | M10 x | 1.5 x 25 |
| Kit No.                   | 52485 | 5-01-1 | 52485 | 5-02-1 | 52485   | 5-03-1  | 52485   | 5-04-1  | 52485 | 5-05-1   | 52485 | 5-06-1   |
| -Z1 Kit No.               | 52485 | 5-01-3 | 52485 | 5-02-3 | 52485   | 5-03-3  | 52485   | 5-04-3  | 52485 | 5-05-3   | 52485 | 5-06-3   |


#### NOTES:

- 1) Kit includes rear fork, cylinder mounting fasteners, pivot pin, and pivot pin retainer clips.
- 2) Mounting is compatible with MP4 male hinge and BMP4 pillow block.




# REAR MALE HINGE MOUNTING KIT SIZES 20 & 25 mm


| LETTED DIM /              |       | BORE   | SIZE  |        |
|---------------------------|-------|--------|-------|--------|
| LETTER DIM /<br>TOLERANCE | 20    | mm     | 25    | mm     |
| TOLLITANOL                | in    | mm     | in    | mm     |
| CA                        | 1.181 | 30.0   | 1.181 | 30.0   |
| CK                        | 0.315 | 8.0    | 0.315 | 8.0    |
| EM                        | 0.634 | 16.1   | 0.634 | 16.1   |
| FL min                    | 0.472 | 12.0   | 0.472 | 12.0   |
| G1                        | 0.630 | 16.0   | 0.630 | 16.0   |
| G2                        | 0.787 | 20.0   | 0.787 | 20.0   |
| G3                        | 1.260 | 32.0   | 1.260 | 32.0   |
| H6                        | 0.157 | 4.0    | 0.157 | 4.0    |
| K2                        | 0.949 | 24.1   | 0.949 | 24.1   |
| R1                        | 0.394 | 10.0   | 0.394 | 10.0   |
| XC (CVB)                  | 4.055 | 103.0  | 4.330 | 110.0  |
| XC (CVC)                  | 3.740 | 95.0   | 4.094 | 104.0  |
| Fastener                  | IV    | 16     | IV    | 16     |
| Kit No.                   | 65778 | 3-01-1 | 65778 | 3-01-1 |
| -Z1 Kit No.               | 65778 | 3-01-3 | 65778 | 3-01-3 |

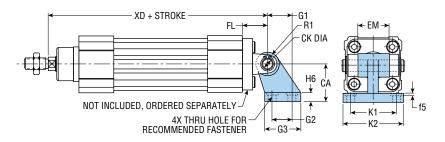






#### SIZES 32 - 100 mm (MP4 PER VDMA 24562)



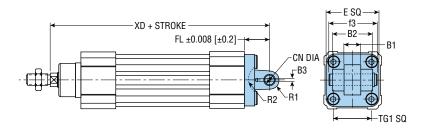

| LETTED DIM /              |       |             |       |             |       | BORE    | SIZE    |         |       |          |               |        |
|---------------------------|-------|-------------|-------|-------------|-------|---------|---------|---------|-------|----------|---------------|--------|
| LETTER DIM /<br>Tolerance | 32    | mm          | 40    | mm          | 50    | mm      | 63      | mm      | 80    | mm       | 100           | mm     |
| TOLLITANOL                | in    | mm          | in    | mm          | in    | mm      | in      | mm      | in    | mm       | in            | mm     |
| E max                     | 1.968 | 50.0        | 2.284 | 58.0        | 2.756 | 70.0    | 3.346   | 85.0    | 4.134 | 105.0    | 5.118         | 130.0  |
| EW max                    | 1.008 | 25.6        | 1.103 | 28.0        | 1.260 | 32.0    | 1.575   | 40.0    | 1.969 | 50.0     | 2.362         | 60.0   |
| TG1                       | 1.280 | 32.5        | 1.496 | 38.0        | 1.831 | 46.5    | 2.224   | 56.5    | 2.835 | 72.0     | 3.504         | 89.0   |
| FL                        | 0.866 | 22.0        | 0.984 | 25.0        | 1.063 | 27.0    | 1.260   | 32.0    | 1.417 | 36.0     | 1.614         | 41.0   |
| L min                     | 0.482 | 12.2        | 0.601 | 15.3        | 0.601 | 15.3    | 0.797   | 20.2    | 0.797 | 20.2     | 0.994         | 25.2   |
| CD/H9                     | 0.394 | 10.0        | 0.472 | 12.0        | 0.472 | 12.0    | 0.630   | 16.0    | 0.630 | 16.0     | 0.787         | 20.0   |
| MR max                    | 0.433 | 11.0        | 0.512 | 13.0        | 0.512 | 13.0    | 0.669   | 17.0    | 0.669 | 17.0     | 0.827         | 21.0   |
| XD                        | 5.591 | 142.0       | 6.299 | 160.0       | 6.693 | 170.0   | 7.480   | 190.0   | 8.268 | 210.0    | 9.055         | 230.0  |
| Fastener                  | M6 x  | M6 x 1 x 20 |       | M6 x 1 x 20 |       | 25 x 20 | M8 x 1. | 25 x 20 | M10 x | 1.5 x 25 | M10 x 1.5 x 2 |        |
| Kit No.                   | 52486 | 6-01-1      | 52486 | 6-02-1      | 52486 | 6-03-1  | 52486   | 6-04-1  | 52486 | 6-05-1   | 52486         | 6-06-1 |
| -Z1 Kit No.               | 52486 | 6-01-3      | 52486 | 6-02-3      | 52486 | 6-03-3  | 52486   | 6-04-3  | 52486 | 6-05-3   | 52486         | 6-06-3 |

#### NOTES:

- 1) Rear male hinge is compatible with MP2 mounting.
- 2) Kit includes hinge and cylinder mounting fasteners.



### PILLOW BLOCK MOUNTING WITH RIGID BEARINGS KIT (BMP4, CETOP RP 107P)



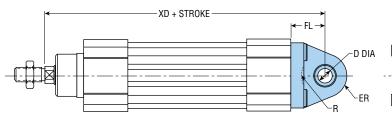


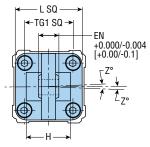

| LETTED DIM /              |        |        |        |        |        | BORE   | SIZE   |        |        |        |        |        |
|---------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| LETTER DIM /<br>TOLERANCE | 32     | mm     | 40     | mm     | 50     | mm     | 63     | mm     | 80     | mm     | 100    | mm     |
| TOLLINANGL                | in     | mm     |
| CK/H9                     | 0.394  | 10.0   | 0.473  | 12.0   | 0.473  | 12.0   | 0.631  | 16.0   | 0.631  | 16.0   | 0.788  | 20.0   |
| K1/JS14                   | 1.496  | 38.0   | 1.614  | 41.0   | 1.969  | 50.0   | 2.047  | 52.0   | 2.598  | 66.0   | 2.992  | 76.0   |
| K2 max                    | 2.008  | 51.0   | 2.126  | 54.0   | 2.559  | 65.0   | 2.638  | 67.0   | 3.386  | 86.0   | 3.780  | 96.0   |
| G1/JS14                   | 0.827  | 21.0   | 0.945  | 24.0   | 1.299  | 33.0   | 1.457  | 37.0   | 1.850  | 47.0   | 2.165  | 55.0   |
| f5 max                    | 0.063  | 1.6    | 0.063  | 1.6    | 0.063  | 1.6    | 0.063  | 1.6    | 0.098  | 2.5    | 0.098  | 2.5    |
| G2                        | 0.709  | 18.0   | 0.866  | 22.0   | 1.181  | 30.0   | 1.378  | 35.0   | 1.575  | 40.0   | 1.969  | 50.0   |
| EM max                    | 1.016  | 25.8   | 1.094  | 27.8   | 1.252  | 31.8   | 1.567  | 39.8   | 1.961  | 49.8   | 2.354  | 59.8   |
| G3 max                    | 1.220  | 31.0   | 1.378  | 35.0   | 1.772  | 45.0   | 1.969  | 50.0   | 2.362  | 60.0   | 2.756  | 70.0   |
| CA/JS15                   | 1.260  | 32.0   | 1.417  | 36.0   | 1.772  | 45.0   | 1.969  | 50.0   | 2.480  | 63.0   | 2.795  | 71.0   |
| H6                        | 0.315  | 8.0    | 0.394  | 10.0   | 0.472  | 12.0   | 0.472  | 12.0   | 0.551  | 14.0   | 0.591  | 15.0   |
| R1 max                    | 0.394  | 10.0   | 0.433  | 11.0   | 0.482  | 12.25  | 0.591  | 15.0   | 0.591  | 15.0   | 0.748  | 19.0   |
| FL                        | 0.866  | 22.0   | 0.984  | 25.0   | 1.063  | 27.0   | 1.260  | 32.0   | 1.417  | 36.0   | 1.614  | 41.0   |
| XD                        | 5.591  | 142.0  | 6.299  | 160.0  | 6.693  | 170.0  | 7.480  | 190.0  | 8.268  | 210.0  | 9.055  | 230.0  |
| Fastener                  | M6     | M6     | M6     | M6     | M8     | M8     | M8     | M8     | M10    | M10    | M10    | M10    |
| Kit No.                   | 62818- | 001-00 | 62818- | 002-00 | 62818- | 003-00 | 62818- | 004-00 | 62818- | 005-00 | 62818- | 006-00 |

- 1) Kit includes pillow block only (no pin or fasteners).
- 2) Pillow block is compatible with MP2 rear fork.

### REAR FORK MOUNTING FOR SPHERICAL BEARING KIT (PHD MSB2 PER VDMA 24562)





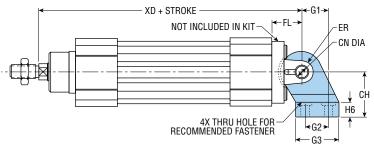


| LETTED DIM /              |       |        |       |        |         | BORE    | SIZE    |         |       |          |       |          |
|---------------------------|-------|--------|-------|--------|---------|---------|---------|---------|-------|----------|-------|----------|
| LETTER DIM /<br>Tolerance | 32    | mm     | 40    | mm     | 50      | mm      | 63      | mm      | 80    | mm       | 100   | mm       |
| IULENANGE                 | in    | mm     | in    | mm     | in      | mm      | in      | mm      | in    | mm       | in    | mm       |
| E max                     | 2.086 | 53.0   | 2.285 | 58.0   | 2.756   | 70.0    | 3.346   | 85.0    | 4.134 | 105.0    | 5.118 | 130.0    |
| B2/d12                    | 1.331 | 33.8   | 1.567 | 39.8   | 1.764   | 44.8    | 1.998   | 50.7    | 2.549 | 64.7     | 2.943 | 74.8     |
| B1/H14                    | 0.560 | 14.2   | 0.638 | 16.2   | 0.837   | 21.3    | 0.837   | 21.3    | 0.995 | 25.3     | 0.995 | 25.3     |
| TG1                       | 1.280 | 32.5   | 1.496 | 38.0   | 1.831   | 46.5    | 2.224   | 56.5    | 2.835 | 72.0     | 3.504 | 89.0     |
| B3/*                      | 0.130 | 3.3    | 0.169 | 4.3    | 0.169   | 4.3     | 0.169   | 4.3     | 0.169 | 4.3      | 0.248 | 6.3      |
| R2 min                    | 0.650 | 16.5   | 0.769 | 19.5   | 0.846   | 21.5    | 0.965   | 24.5    | 1.161 | 29.5     | 1.161 | 29.5     |
| f3                        | 1.811 | 46.0   | 2.087 | 53.0   | 2.283   | 58.0    | 2.598   | 66.0    | 3.150 | 80.0     | 3.543 | 90.0     |
| FL                        | 0.866 | 22.0   | 0.984 | 25.0   | 1.063   | 27.0    | 1.260   | 32.0    | 1.417 | 36.0     | 1.614 | 41.0     |
| CN/F7                     | 0.394 | 10.0   | 0.473 | 12.0   | 0.631   | 16.0    | 0.631   | 16.0    | 0.789 | 20.0     | 0.789 | 20.0     |
| R1 max                    | 0.433 | 11.0   | 0.512 | 13.0   | 0.709   | 18.0    | 0.709   | 18.0    | 0.866 | 22.0     | 0.866 | 22.0     |
| XD                        | 5.591 | 142.0  | 6.299 | 160.0  | 6.693   | 170.0   | 7.480   | 190.0   | 8.268 | 210.0    | 9.055 | 230.0    |
| Fastener                  | M6 x  | 1 x 20 | M6 x  | 1 x 20 | M8 x 1. | 25 x 20 | M8 x 1. | 25 x 20 | M10 x | 1.5 x 25 | M10 x | 1.5 x 25 |
| Kit No.                   | 52489 | 9-01-1 | 52489 | 9-02-1 | 52489   | 9-03-1  | 52489   | 9-04-1  | 52489 | -05-1    | 52489 | 9-06-1   |
| -Z1 Kit No.               | 52489 | 9-01-3 | 52489 | 9-02-3 | 52489   | 9-03-3  | 52489   | 9-04-3  | 52489 | -05-3    | 52489 | 9-06-3   |

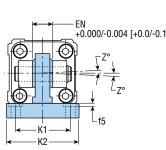
- Niti includes rear fork, cylinder mounting fasteners, pivot pin, and pivot pin retainer clips.
   Mounting is compatible with MP4 male hinge and BMP4 pillow block.

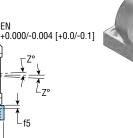


### REAR MALE HINGE MOUNTING WITH SPHERICAL BEARING KIT (PHD MSB1)







| LETTER DIM / |       |        |             |        |                | BORE   | SIZE           |        |                    |          |       |          |
|--------------|-------|--------|-------------|--------|----------------|--------|----------------|--------|--------------------|----------|-------|----------|
| TOLERANCE    | 32    | mm     | 40          | mm     | 50             | mm     | 63             | mm     | 80                 | mm       | 100   | mm       |
| IULENANGE    | in    | mm     | in          | mm     | in             | mm     | in             | mm     | in                 | mm       | in    | mm       |
| TG1          | 1.280 | 32.5   | 1.496       | 38.0   | 1.831          | 46.5   | 2.224          | 56.5   | 2.835              | 72.0     | 3.504 | 89.0     |
| FL/JS15      | 0.866 | 22.0   | 0.984       | 25.0   | 1.063          | 27.0   | 1.260          | 32.0   | 1.417              | 36.0     | 1.614 | 41.0     |
| D/H7         | 0.394 | 10.0   | 0.472       | 12.0   | 0.630          | 16.0   | 0.630          | 16.0   | 0.787              | 20.0     | 0.787 | 20.0     |
| EN           | 0.549 | 14.0   | 0.628       | 16.0   | 0.825          | 21.0   | 0.825          | 21.0   | 0.982              | 25.0     | 0.982 | 25.0     |
| ER max       | 0.630 | 16.0   | 0.748       | 19.0   | 0.827          | 21.0   | 0.945          | 24.0   | 1.102              | 28.0     | 1.181 | 30.0     |
| L max        | 1.968 | 50.0   | 2.285       | 58.0   | 2.756          | 70.0   | 3.346          | 85.0   | 4.134              | 105.0    | 5.118 | 130.0    |
| Z°           | 4°    | 4°     | 4°          | 4°     | 4°             | 4°     | 4°             | 4°     | 4°                 | 4°       | 4°    | 4°       |
| Н            | _     | _      | _           | _      | 2.008          | 51.0   | _              | _      | _                  | _        | _     | _        |
| R            | _     | _      | _           | _      | 0.748          | 19.0   | _              | _      | _                  | _        | _     | _        |
| XD           | 5.591 | 142.0  | 6.299       | 160.0  | 6.693          | 170.0  | 7.480          | 190.0  | 8.268              | 210.0    | 9.055 | 230.0    |
| Fastener     | M6 x  | 1 x 20 | M6 x 1 x 20 |        | M8 x 1.25 x 20 |        | M8 x 1.25 x 20 |        | M10 x <sup>-</sup> | 1.5 x 25 | M10 x | 1.5 x 25 |
| Kit No.      | 52488 | 3-01-1 | 52488       | 3-02-1 | 52488          | 3-03-1 | 52488          | 3-04-1 | 52488              | 3-05-1   | 52488 | 3-06-1   |
| -Z1 Kit No.  | 52488 | 3-01-3 | 52488       | 3-02-3 | 52488          | 3-03-3 | 52488          | 3-04-3 | 52488              | 3-05-3   | 52488 | 3-06-3   |

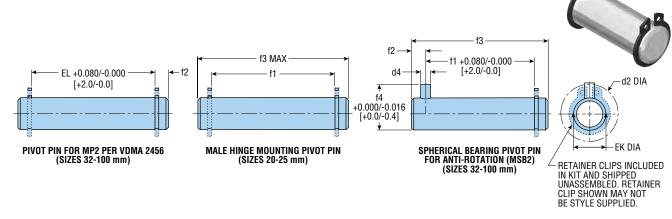
- 1) Kit includes hinge and cylinder mounting fasteners.
  2) Rear male hinge is compatible with MSB2 rear fork for spherical bearing.

### PILLOW BLOCK MOUNTING WITH SPHERICAL BEARING KIT (PHD BSB1 PER VDMA 24562)





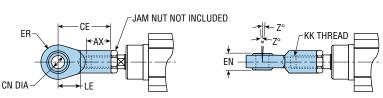



| LETTED DIM /              |        |        |        |        |        | BORE   | SIZE   |        |        |        |        |        |
|---------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| LETTER DIM /<br>Tolerance | 32     | mm     | 40     | mm     | 50     | mm     | 63     | mm     | 80     | mm     | 100    | mm     |
| TULENANGE                 | in     | mm     |
| CN/H7                     | 0.394  | 10.0   | 0.472  | 12.0   | 0.630  | 16.0   | 0.630  | 16.0   | 0.787  | 20.0   | 0.787  | 20.0   |
| K1/JS14                   | 1.496  | 38.0   | 1.614  | 41.0   | 1.969  | 50.0   | 2.047  | 52.0   | 2.598  | 66.0   | 2.992  | 76.0   |
| K2 max                    | 2.008  | 51.0   | 2.126  | 54.0   | 2.559  | 65.0   | 2.638  | 67.0   | 3.386  | 86.0   | 3.780  | 96.0   |
| G1/JS14                   | 0.827  | 21.0   | 0.945  | 24.0   | 1.299  | 33.0   | 1.457  | 37.0   | 1.850  | 47.0   | 2.165  | 55.0   |
| f5 max                    | 0.063  | 1.6    | 0.063  | 1.6    | 0.063  | 1.6    | 0.063  | 1.6    | 0.098  | 2.5    | 0.098  | 2.5    |
| G2/JS14                   | 0.709  | 18.0   | 0.866  | 22.0   | 1.181  | 30.0   | 1.378  | 35.0   | 1.575  | 40.0   | 1.969  | 50.0   |
| EN                        | 0.549  | 14.0   | 0.628  | 16.0   | 0.825  | 21.0   | 0.825  | 21.0   | 0.982  | 25.0   | 0.982  | 25.0   |
| G3 max                    | 1.220  | 31.0   | 1.378  | 35.0   | 1.772  | 45.0   | 1.969  | 50.0   | 2.362  | 60.0   | 2.756  | 70.0   |
| CH/JS15                   | 1.260  | 32.0   | 1.417  | 36.0   | 1.772  | 45.0   | 1.969  | 50.0   | 2.480  | 63.0   | 2.795  | 71.0   |
| H6                        | 0.394  | 10.0   | 0.394  | 10.0   | 0.472  | 12.0   | 0.472  | 12.0   | 0.551  | 14.0   | 0.591  | 15.0   |
| ER max                    | 0.630  | 16.0   | 0.709  | 18.0   | 0.827  | 21.0   | 0.906  | 23.0   | 1.102  | 28.0   | 1.181  | 30.0   |
| FL                        | 0.866  | 22.0   | 0.984  | 25.0   | 1.063  | 27.0   | 1.260  | 32.0   | 1.417  | 36.0   | 1.614  | 41.0   |
| XD                        | 5.591  | 142.0  | 6.299  | 160.0  | 6.693  | 170.0  | 7.480  | 190.0  | 8.268  | 210.0  | 9.055  | 230.0  |
| Z°                        | 4°     | 4°     | 4°     | 4°     | 4°     | 4°     | 4°     | 4°     | 4°     | 4°     | 4°     | 4°     |
| Fastener                  | M6     | M6     | M6     | M6     | M8     | M8     | M8     | M8     | M10    | M10    | M10    | M10    |
| Kit No.                   | 62822- | 001-00 | 62822- | 002-00 | 62822- | 003-00 | 62822- | 004-00 | 62822- | 005-00 | 62822- | 006-00 |

#### NOTES:

- 1) Kit includes pillow block only. No mounting fasteners.
- 2) Pillow block is compatible with MSB2 rear fork for spherical bearing.
- 3) Not available in -Z1.




#### **PIVOT PIN KIT**



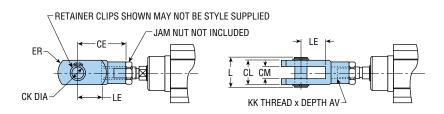
| LETTED DIM /              |       |          |          |       |                |        |       | BORE   | SIZE    |        |       |        |       |        |       |        |
|---------------------------|-------|----------|----------|-------|----------------|--------|-------|--------|---------|--------|-------|--------|-------|--------|-------|--------|
| LETTER DIM /<br>Tolerance | 20 ו  | mm       | 25 ו     | mm    | 32             | mm     | 40    | mm     | 50      | mm     | 63    | mm     | 80 1  | mm     | 100   | mm     |
| TOLENANGE                 | in    | mm       | in       | mm    | in             | mm     | in    | mm     | in      | mm     | in    | mm     | in    | mm     | in    | mm     |
|                           |       |          |          |       |                |        |       | MP2 PI | VOT PIN |        |       |        |       |        |       |        |
| d2 max                    | _     | _        | _        | _     | 0.906          | 23.0   | 0.984 | 25.0   | 0.984   | 25.0   | 1.260 | 32.0   | 1.260 | 32.0   | 1.575 | 40.0   |
| EK/e8                     | _     | _        | _        | _     | 0.392          | 10.0   | 0.471 | 12.0   | 0.471   | 12.0   | 0.628 | 16.0   | 0.628 | 16.0   | 0.785 | 20.0   |
| EL                        | _     | _        | _        | _     | 1.850          | 47.0   | 2.126 | 54.0   | 2.441   | 62.0   | 2.835 | 72.0   | 3.622 | 92.0   | 4.409 | 112.0  |
| f2 max                    | _     | _        | _        | _     | 0.335          | 8.5    | 0.335 | 8.5    | 0.335   | 8.5    | 0.433 | 11.0   | 0.433 | 11.0   | 0.433 | 11.0   |
| Kit No.                   | _     | _        | _        | _     | 52490          | -01-1  | 52490 | )-02-1 | 52490   | )-03-1 | 52490 | )-04-1 | 52490 | )-05-1 | 52490 | 0-06-1 |
| -Z1 Kit No.               | _     |          | _        |       | 52490          | )-01-3 | 52490 | )-02-3 | 52490   | )-03-3 | 52490 | )-04-3 | 52490 | )-05-3 | 52490 | 0-06-3 |
|                           |       | MALE HII | NGE PINS |       | MSB2 PIVOT PIN |        |       |        |         |        |       |        |       |        |       |        |
| d2 max                    | _     | _        | _        | _     | 0.906          | 23.0   | 0.984 | 25.0   | 0.984   | 25.0   | 1.260 | 32.0   | 1.260 | 32.0   | 1.575 | 40.0   |
| d4/H12                    | _     | _        | _        | _     | 0.120          | 3.0    | 0.160 | 4.0    | 0.160   | 4.0    | 0.160 | 4.0    | 0.160 | 4.0    | 0.160 | 4.0    |
| EK/h9                     | 0.315 | 8.0      | 0.315    | 8.0   | 0.392          | 10.0   | 0.472 | 12.0   | 0.629   | 16.0   | 0.629 | 16.0   | 0.786 | 20.0   | 0.788 | 20.0   |
| f1                        | 0.945 | 24.0     | 0.945    | 24.0  | 1.280          | 32.5   | 1.500 | 38.1   | 1.697   | 43.1   | 1.933 | 49.1   | 2.484 | 63.1   | 2.878 | 73.1   |
| f2 max                    | _     | _        | _        | _     | 0.177          | 4.5    | 0.236 | 6.0    | 0.236   | 6.0    | 0.236 | 6.0    | 0.236 | 6.0    | 0.236 | 6.0    |
| f3 max                    | 1.260 | 32.0     | 1.260    | 32.0  | 1.811          | 46.0   | 2.087 | 53.0   | 2.283   | 58.0   | 2.598 | 66.0   | 3.150 | 80.0   | 3.543 | 90.0   |
| f4                        | _     | _        | _        | _     | 0.543          | 13.8   | 0.622 | 15.8   | 0.780   | 19.8   | 0.780 | 19.8   | 0.937 | 23.8   | 0.937 | 23.8   |
| Kit No.                   | 52491 | -07-1    | 52491    | -07-1 | 52491          | -01-1  | 52491 | -02-1  | 52491   | -03-1  | 52491 | -04-1  | 52491 | -05-1  | 52491 | I-06-1 |
| -Z1 Kit No.               | 52491 | -07-3    | 52491    | -07-3 | 52491          | -01-3  | 52491 | -02-3  | 52491   | -03-3  | 52491 | -04-3  | 52491 | -05-3  | 52491 | I-06-3 |

# ROD EYE MOUNTING WITH SPHERICAL BEARING KIT FOR METRIC ROD ENDS (CONTACT PHD FOR IMPERIAL STYLE)

SIZES 20 - 100 mm (DIN 8139)



|       |                                           |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                        | BORE S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | IZE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------|-------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 20    | ) mm                                      | 2                                                                                              | 5 mm                                                                                                                                                                                                                                                                                                                                                           | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4                                                      | 0 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ) mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 63                                    | 3 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ) mm      | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| in*   | mm                                        | in*                                                                                            | mm                                                                                                                                                                                                                                                                                                                                                             | in*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | in*                                                    | mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | in*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | in*                                   | mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | in*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | mm        | in*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.630 | 16.0                                      | 0.787                                                                                          | 20.0                                                                                                                                                                                                                                                                                                                                                           | 0.787                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.866                                                  | 22.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 28.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.102                                 | 28.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.299                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 33.0      | 1.299                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 33.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1.417 | 36.0                                      | 1.693                                                                                          | 43.0                                                                                                                                                                                                                                                                                                                                                           | 1.693                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 43.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.969                                                  | 50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.520                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 64.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.520                                 | 64.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.031                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 77.0      | 3.031                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 77.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.315 | 8.0                                       | 0.394                                                                                          | 10.0                                                                                                                                                                                                                                                                                                                                                           | 0.394                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.473                                                  | 12.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.631                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 16.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.631                                 | 16.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.788                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20.0      | 0.788                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.470 | 12.0                                      | 0.547                                                                                          | 13.9                                                                                                                                                                                                                                                                                                                                                           | 0.547                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.626                                                  | 15.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.823                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.823                                 | 20.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.980                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 24.9      | 0.980                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 24.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.482 | 12.2                                      | 0.541                                                                                          | 13.7                                                                                                                                                                                                                                                                                                                                                           | 0.541                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.620                                                  | 15.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.817                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.817                                 | 20.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.974                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 24.7      | 0.974                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 24.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| _     | M8 x 1.25                                 | _                                                                                              | M10 x 1.25                                                                                                                                                                                                                                                                                                                                                     | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | M10 x 1.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _                                                      | M12 x 1.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | M16 x 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                     | M16 x 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M20 x 1.5 | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | M20 x 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.512 | 13.0                                      | 0.591                                                                                          | 15.0                                                                                                                                                                                                                                                                                                                                                           | 0.591                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.669                                                  | 17.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.906                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 23.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.906                                 | 23.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.063                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 27.0      | 1.063                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 27.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|       | 4°                                        |                                                                                                | 4°                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        | 4°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       | 4°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4°        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 5249  | 93-05-1                                   | 524                                                                                            | 93-01-1                                                                                                                                                                                                                                                                                                                                                        | 524                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 93-01-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 524                                                    | 93-02-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5249                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 93-03-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5249                                  | 93-03-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5249                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 93-04-1   | 524                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 93-04-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|       | in* 0.630 1.417 0.315 0.470 0.482 — 0.512 | 0.630 16.0<br>1.417 36.0<br>0.315 8.0<br>0.470 12.0<br>0.482 12.2<br>— M8 x 1.25<br>0.512 13.0 | in*         mm         in*           0.630         16.0         0.787           1.417         36.0         1.693           0.315         8.0         0.394           0.470         12.0         0.547           0.482         12.2         0.541           —         M8 x 1.25         —           0.512         13.0         0.591           4°         0.591 | in*         mm         in*         mm           0.630         16.0         0.787         20.0           1.417         36.0         1.693         43.0           0.315         8.0         0.394         10.0           0.470         12.0         0.547         13.9           0.482         12.2         0.541         13.7           —         M8 x 1.25         —         M10 x 1.25           0.512         13.0         0.591         15.0           4°         4°         4° | in*         mm         in*         mm         in*           0.630         16.0         0.787         20.0         0.787           1.417         36.0         1.693         43.0         1.693           0.315         8.0         0.394         10.0         0.394           0.470         12.0         0.547         13.9         0.547           0.482         12.2         0.541         13.7         0.541           0.482         12.2         0.541         13.7         0.541           0.591         15.0         0.591         0.591           4°         4°         4° | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | in*         mm         in*         mm         in*         mm         in*           0.630         16.0         0.787         20.0         0.787         20.0         0.866           1.417         36.0         1.693         43.0         1.693         43.0         1.969           0.315         8.0         0.394         10.0         0.394         10.0         0.473           0.470         12.0         0.547         13.9         0.547         13.9         0.626           0.482         12.2         0.541         13.7         0.541         13.7         0.620           0.482         12.2         0.541         13.7         0.541         13.7         0.620           0.482         12.2         0.541         13.7         0.541         13.7         0.620           0.591         13.0         0.591         15.0         0.591         15.0         0.669           4°         4°         4°         4°         4°         4° | 20 mm         25 mm         32 mm         40 mm           in*         mm         in*         mm         in*         mm           0.630         16.0         0.787         20.0         0.787         20.0         0.866         22.0           1.417         36.0         1.693         43.0         1.693         43.0         1.969         50.0           0.315         8.0         0.394         10.0         0.394         10.0         0.473         12.0           0.470         12.0         0.547         13.9         0.626         15.9           0.482         12.2         0.541         13.7         0.541         13.7         0.620         15.7           M8 x 1.25         —         M10 x 1.25         —         M10 x 1.25         —         M12 x 1.25           0.512         13.0         0.591         15.0         0.591         15.0         0.669         17.0           4°         4°         4°         4°         4°         4° | in*         mm         in*         mm         in*         mm         in*           0.630         16.0         0.787         20.0         0.787         20.0         0.866         22.0         1.102           1.417         36.0         1.693         43.0         1.693         43.0         1.969         50.0         2.520           0.315         8.0         0.394         10.0         0.394         10.0         0.473         12.0         0.631           0.470         12.0         0.547         13.9         0.547         13.9         0.626         15.9         0.823           0.482         12.2         0.541         13.7         0.541         13.7         0.620         15.7         0.817           M8 x 1.25         —         M10 x 1.25         —         M10 x 1.25         —         M12 x 1.25         —           0.512         13.0         0.591         15.0         0.591         15.0         0.669         17.0         0.906           4°         4°         4°         4°         4°         4° | 20 mm   25 mm   32 mm   40 mm   50 mm | 20 mm   25 mm   32 mm   40 mm   50 mm   63 mm   10* mm   in* mm | 20 mm   25 mm   32 mm   40 mm   50 mm   63 mm     in*   mm   in*   mm   in*   mm   in*   mm   in*   mm   in*   mm     0.630   16.0   0.787   20.0   0.787   20.0   0.866   22.0   1.102   28.0   1.102   28.0     1.417   36.0   1.693   43.0   1.693   43.0   1.969   50.0   2.520   64.0   2.520   64.0     0.315   8.0   0.394   10.0   0.394   10.0   0.473   12.0   0.631   16.0   0.631   16.0     0.470   12.0   0.547   13.9   0.547   13.9   0.626   15.9   0.823   20.9   0.823   20.9     0.482   12.2   0.541   13.7   0.541   13.7   0.620   15.7   0.817   20.8   0.817   20.8     m   8 x 1.25   m   M10 x 1.25   m   M10 x 1.25   m   M16 x 1.5   m   M16 x 1.5     0.512   13.0   0.591   15.0   0.591   15.0   0.669   17.0   0.906   23.0   0.906   23.0     4°   4°   4°   4°   4°   4°   4° | 20 mm     | 20 mm   25 mm   32 mm   40 mm   50 mm   63 mm   80 mm   in*   m | 20 mm   25 mm   32 mm   40 mm   50 mm   63 mm   80 mm   10 m*   m*   mm   in*   mm |

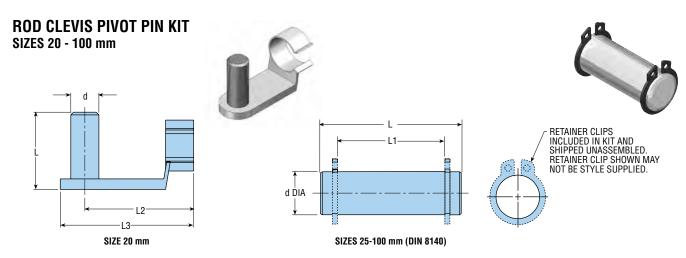

#### NOTES:

- 1) 32-100 mm sizes compatible with MSB2 rear fork for spherical bearing.
- 2) Not available in -Z1 or with imperial threads.
- 3) \*Consult PHD for imperial rod eye mounting components and availability. Inch dimensions are given for metric conversion convenience only.



### ROD CLEVIS MOUNTING KIT FOR METRIC ROD ENDS (CONTACT PHD FOR IMPERIAL STYLE)

SIZES 20 - 100 mm (DIN 8140)






| LETTER DIM /        |       |           |       |            |            |            |            | BORE S     | IZE        |           |            |           |            |           |       |           |
|---------------------|-------|-----------|-------|------------|------------|------------|------------|------------|------------|-----------|------------|-----------|------------|-----------|-------|-----------|
| TOLERANCE           | 20    | ) mm      | 2     | 25 mm      | 3          | 2 mm       | 4          | 10 mm      | 50         | ) mm      | 63         | 3 mm      | 80         | ) mm      | 10    | 0 mm      |
| TOLLITANUL          | in*   | mm        | in*   | mm         | in*        | mm         | in*        | mm         | in*        | mm        | in*        | mm        | in*        | mm        | in*   | mm        |
| AV min              | 0.630 | 16.0      | 0.787 | 20.0       | 0.787      | 20.0       | 0.866      | 22.0       | 1.102      | 28.0      | 1.102      | 28.0      | 1.299      | 33.0      | 1.299 | 33.00     |
| CE                  | 1.260 | 32.0      | 1.575 | 40.0       | 1.575      | 40.0       | 1.890      | 48.0       | 2.520      | 64.0      | 2.520      | 64.0      | 3.150      | 80.0      | 3.150 | 80.0      |
| CL/H9               | 0.316 | 8.03      | 0.394 | 10.00      | 0.394      | 10.0       | 0.473      | 12.0       | 0.631      | 16.0      | 0.631      | 16.0      | 0.780      | 20.0      | 0.787 | 20.0      |
| CL max              | 0.630 | 16.0      | 0.787 | 20.0       | 0.787      | 20.0       | 0.945      | 24.0       | 1.260      | 32.0      | 1.260      | 32.0      | 1.575      | 40.0      | 1.575 | 40.0      |
| CM min              | 0.315 | 8.0       | 0.394 | 10.0       | 0.394      | 10.0       | 0.472      | 12.0       | 0.630      | 16.0      | 0.630      | 16.0      | 0.787      | 20.0      | 0.787 | 20.0      |
| ER max              | 0.512 | 13.0      | 0.630 | 16.0       | 0.630      | 16.0       | 0.748      | 19.0       | 0.984      | 25.0      | 0.984      | 25.0      | 1.260      | 32.0      | 1.260 | 32.0      |
| KK                  | _     | M8 x 1.25 | _     | M10 x 1.25 | _          | M10 x 1.25 | _          | M12 x 1.25 | _          | M16 x 1.5 | _          | M16 x 1.5 | _          | M20 x 1.5 | _     | M20 x 1.5 |
| L                   | 0.827 | 21.0      | 0.984 | 25.0       | 0.984      | 25.0       | 1.181      | 30.0       | 1.535      | 39.0      | 1.535      | 39.0      | 1.890      | 48.0      | 1.890 | 48.0      |
| LE min              | 0.650 | 16.5      | 0.807 | 20.5       | 0.807      | 20.5       | 0.965      | 24.5       | 1.279      | 32.5      | 1.279      | 32.5      | 1.594      | 40.5      | 1.594 | 40.5      |
| Metric Kit No.*     | 5249  | 92-05-1   | 524   | 192-01-1   | 52492-01-1 |            | 52492-02-1 |            | 52492-03-1 |           | 52492-03-1 |           | 52492-04-1 |           | 524   | 92-04-1   |
| Metric -Z1 Kit No.* | 5249  | 92-05-3   | 524   | 192-01-3   | 524        | 92-01-3    | 524        | 192-02-3   | 5249       | 92-03-3   | 5249       | 92-03-3   | 524        | 92-04-3   | 524   | 92-04-3   |

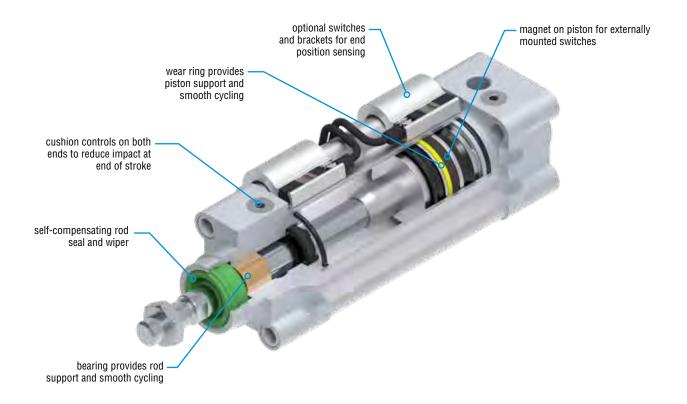
#### NOTES:

- 1) Kit includes clevis, pivot pin, and retainer rings. Jam nut not included.
- 2) \*Consult PHD for imperial rod eye mounting components and availability. Imperial dimensions are given for metric conversion convenience only.



|              |     |       |        |       |        |       |        |       | BORE   | SIZE  |        |       |        |       |        |        |        |
|--------------|-----|-------|--------|-------|--------|-------|--------|-------|--------|-------|--------|-------|--------|-------|--------|--------|--------|
| LETTI<br>DIN |     | 20 ו  | mm     | 25    | mm     | 32 mm |        | 40 mm |        | 50 mm |        | 63 ו  | mm     | 80    | mm     | 100 mm |        |
| 5111         |     | in    | mm     | in     | mm     |
| d            |     | 0.315 | 8.0    | 0.394 | 10.0   | 0.394 | 10.0   | 0.472 | 12.0   | 0.630 | 16.0   | 0.630 | 16.0   | 0.787 | 20.0   | 0.787  | 20.0   |
| L            |     | 0.827 | 21.0   | 0.984 | 25.0   | 0.984 | 25.0   | 1.181 | 30.0   | 1.535 | 39.0   | 1.535 | 39.0   | 1.890 | 48.0   | 1.890  | 48.0   |
| L1           |     |       | _      | 0.791 | 20.1   | 0.791 | 20.1   | 0.949 | 24.1   | 1.264 | 32.1   | 1.264 | 32.1   | 1.579 | 40.1   | 1.579  | 40.1   |
| L2           |     | 1.220 | 31.0   | _     | _      | _     | _      | _     | _      | _     | _      | _     | _      | _     | _      | _      | _      |
| L3           |     | 1.457 | 37.0   | _     | _      | _     | _      | _     | _      | _     | _      | _     | _      | _     | _      | _      | _      |
| Kit N        | lo. | 63463 | 3-05-1 | 63463 | 3-01-1 | 63463 | 3-01-1 | 63463 | 3-02-1 | 63463 | 3-03-1 | 63463 | 3-03-1 | 63463 | 3-04-1 | 63463  | 3-04-1 |
| -Z1 Kit      | No. | 63463 | 3-05-3 | 63463 | 3-01-3 | 63463 | 3-01-3 | 63463 | 3-02-3 | 63463 | 3-03-3 | 63463 | 3-03-3 | 63463 | 3-04-3 | 63463  | 3-04-3 |

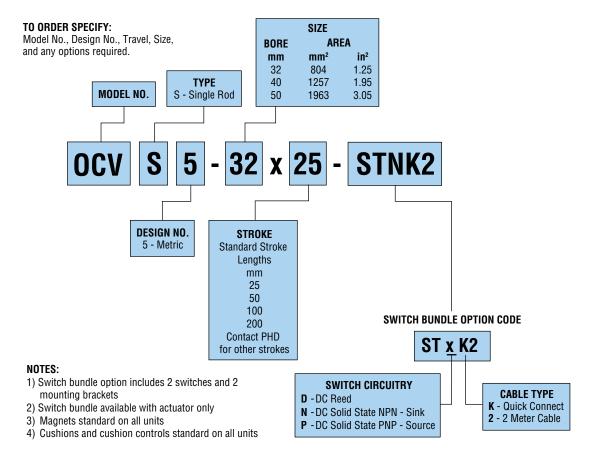



### **PNEUMATIC ISO CYLINDER**

# **OCV**

#### **Major Benefits**

- Series OCV Cylinders are ISO 6431
- The price alternative to the PHD Series CV Pneumatic Cylinder
- 32, 40 & 50 mm bores
- 25, 50, 100 & 200 mm stroke lengths





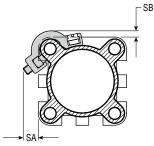

| COMPONENT      | MATERIALS               |
|----------------|-------------------------|
| HEAD & CAP     | Painted Aluminum Alloy  |
| CYLINDER TUBE  | Anodized Aluminum Alloy |
| ROD SEAL       | Polyurethane            |
| PISTON SEAL    |                         |
| 0-RINGS        | NBR                     |
| CUSHION SEAL   |                         |
| PISTON ROD     | Carbon Steel            |
| ROD NUT        | Carbon Steen            |
| CUSHION NEEDLE | Brass                   |
| ROD BUSHING    | PTFE and Bronze Alloy   |



# **ORDERING DATA:** Series OCV Cylinders



| SW  | TC: | Н | F.S |
|-----|-----|---|-----|
| OVV | 116 |   | Lu  |


| PART NO. | DESCRIPTION                                       |
|----------|---------------------------------------------------|
| 85844-0  | Reed, DC 5-30 V, 50 mA w/Quick Connect            |
| 85844-2  | Reed, DC 5-30 V, 50 mA w/2 m cable                |
| 85845-0  | Solid State NPN, DC 5-30 V, 50 mA w/Quick Connect |
| 85845-2  | Solid State NPN, DC 5-30 V, 50 mA w/2 m cable     |
| 85846-0  | Solid State PNP, DC 5-30 V, 50 mA w/Quick Connect |
| 85846-2  | Solid State PNP, DC 5-30 V, 50 mA w/2 m cable     |
| 000 TO Z | John State Five, Do o oo v, oo ma w/2 m cable     |

Includes one switch.

#### **CORDSETS**

| MODEL NO. | CABLE LENGTH    |
|-----------|-----------------|
| 63549-02  | 78.74 in [2 m]  |
| 63549-05  | 196.85 in [5 m] |

Includes one cordset.



| SWITCH BRACKET |     |     |  |  |  |  |  |
|----------------|-----|-----|--|--|--|--|--|
| BORE SA SB     |     |     |  |  |  |  |  |
| 32             | 7.6 | 3.4 |  |  |  |  |  |
| 40             | 6.3 | 2.2 |  |  |  |  |  |
| 50             | 5.8 | 1.2 |  |  |  |  |  |

#### TRUNNION MOUNT

| BORE | PART NO.       |
|------|----------------|
| 32   | 85841-032-00-1 |
| 40   | 85841-040-00-1 |
| 50   | 85841-050-00-1 |

#### NOTES:

- Trunnion mount incompatible on 25 mm stroke units with a single switch.
- Trunnion mount incompatible on 25 mm and 50 mm stroke units with two switches.
- Trunnion installation requires end user to remove and reinstall the cylinder cap.

#### **CAD & Sizing Assistance**

Use PHD's free online Product Sizing and CAD Configurator at **phdinc.com/myphd** 



## **ENGINEERING DATA:** Series OCV Cylinders

| SPECIFICATIONS         | SERIES OCV CYLINDER               |
|------------------------|-----------------------------------|
| OPERATING AIR PRESSURE | 1 - 10 bar [15 - 150 psi]         |
| TEMPERATURE LIMITS     | -5° to +70°C [23°-158°F]          |
| VELOCITY               | 50-800 mm/s [2-31 in/s]           |
| RATED LIFE             | 3 million cycles                  |
| LUBRICATION            | Factory lubricated for rated life |

| BORE | ROD<br>DIA | ROD<br>DIRECTION | EFFE( | CTIVE<br>EA |      | SE<br>GHT | ADI<br>PER 2 |     |
|------|------------|------------------|-------|-------------|------|-----------|--------------|-----|
|      | mm         | DINECTION        | mm²   | in²         | g    | 0Z        | g            | 0Z  |
| 32   | 12         | Extend           | 804   | 1.25        | 485  | 17.1      | 23           | 0.8 |
| 32   | 12         | Retract          | 691   | 1.07        | 400  | 17.1      | 23           | 0.6 |
| 40   | 16         | Extend           | 1257  | 1.95        | 739  | 26.1      | 82           | 2.9 |
| 40   | 10         | Retract          | 1056  | 1.64        | 739  | 20.1      | 02           | 2.9 |
| 50   | 20         | Extend           | 1963  | 3.04        | 1143 | 40.3      | 113          | 4.0 |
| 30   | 20         | Retract          | 1649  | 2.56        | 1143 | 40.3      | 113          | 4.0 |

### **Application & Sizing Assistance**

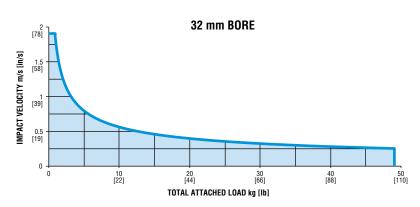
Use PHD's free online Product Sizing and Application at www.phdinc.com/apps/sizing

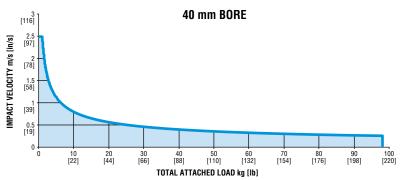
#### **SPEED DATA - STANDARD UNITS**

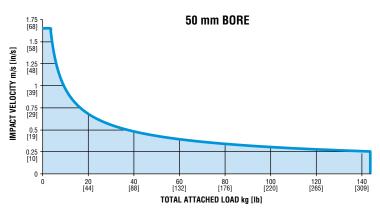
| BORE | ACCELERATION<br>TIME | STROKE DURING ACCELERATION |      |  |  |  |
|------|----------------------|----------------------------|------|--|--|--|
|      | S                    | mm                         | in   |  |  |  |
| 32   | 0.015                | 16                         | 0.63 |  |  |  |
| 40   | 0.019                | 24                         | 0.94 |  |  |  |
| 50   | 0.024                | 29                         | 1.14 |  |  |  |

#### NOTES:

The above speed data is based on:

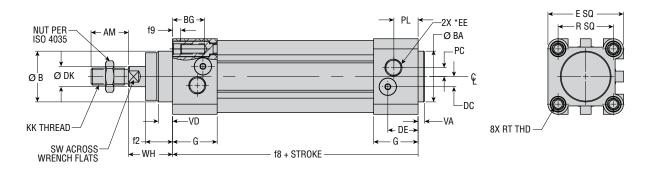

- A) No attached loads
- B) Line pressure of 6 bar [87 psi]
- C) Valve and tubing rated at Cv=50


#### **CYLINDER FORCE TABLE**


| BORE | ROD<br>Dia | ROD<br>DIRECTION | EFFECTIVE<br>Area |                 |      |  |
|------|------------|------------------|-------------------|-----------------|------|--|
|      | mm         | DITIEOTION       | mm²               | in <sup>2</sup> |      |  |
| 32   | 12         | Extend           | 804               | 1.25            |      |  |
| 32   | 12         | Retract          | 691               | 1.07            |      |  |
| 40   | 16         | Extend           | 1257              | 1.95            |      |  |
| 40   |            | 10               | Retract           | 1056            | 1.64 |  |
| 50   |            | Extend           | 1963              | 3.04            |      |  |
| 50   | 20         | Retract          | 1649              | 2.56            |      |  |

| BORE | NORMAL<br>Stroke [l] | FULL STROKE<br>Tolerance |          |  |  |  |  |
|------|----------------------|--------------------------|----------|--|--|--|--|
|      | mm                   | mm                       | in       |  |  |  |  |
| 32   | L ≤ 500              | +2.0/-0                  | +0.08/-0 |  |  |  |  |
| 32   | 500 < L ≤ 1000       | +3.2/-0                  | +0.13/-0 |  |  |  |  |
| 40   | L ≤ 500              | +2.0/-0                  | +0.08/-0 |  |  |  |  |
| 40   | 500 < L ≤ 1000       | +3.2/-0                  | +0.13/-0 |  |  |  |  |
| 50   | L ≤ 500              | +2.0/-0                  | +0.08/-0 |  |  |  |  |
| 50   | 500 < L ≤ 1000       | +3.2/-0                  | +0.13/-0 |  |  |  |  |

#### **MAXIMUM ALLOWABLE KINETIC ENERGY**

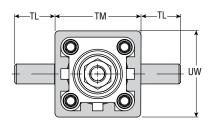


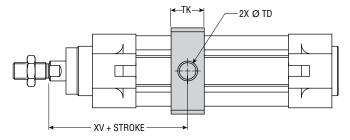







### **DIMENSIONS:** Series OCV Cylinders





#### NOTES:

- 1) DIMENSIONS ARE IN MM.
- 2) DESIGNATED CENTERLINE IS CENTERLINE OF CYLINDER.
- 3) UNLESS OTHERWISE DIMENSIONED, MOUNTING HOLE PATTERNS ARE CENTERED ON DESIGNATED CYLINDER CENTERLINE.
- 4) \*EE CONFORMS TO ISO 16030.

| BORE | Ø B  | RT        | WH   | f2   | R SQ | BG<br>MIN | VD   | VA<br>MAX | G    | f8    | f9  | E SQ MAX | SW (WRENCH<br>FLAT) | Ø BA | KK         | АМ   | *EE<br>Port | PL   | PC  | DE   | DC   | Ø DK |
|------|------|-----------|------|------|------|-----------|------|-----------|------|-------|-----|----------|---------------------|------|------------|------|-------------|------|-----|------|------|------|
| 32   | 30.0 | M6 x1     | 26.0 | 18.0 | 32.5 | 16.0      | 10.0 | 4.0       | 26.0 | 94.0  | 5.0 | 50.0     | 10.0                | 30.0 | M10 x 1.25 | 22.0 | G 1/8       | 13.0 | 5.2 | 16.3 | 6.0  | 12.0 |
| 40   | 35.0 | M6 x1     | 30.0 | 21.5 | 38.0 | 16.0      | 10.5 | 4.0       | 29.6 | 105.0 | 5.0 | 58.0     | 13.0                | 35.0 | M12 x 1.25 | 24.0 | G 1/4       | 14.0 | 6.0 | 17.6 | 8.0  | 16.0 |
| 50   | 40.0 | M8 x 1.25 | 37.0 | 28.0 | 46.5 | 16.0      | 11.5 | 4.0       | 30.0 | 106.0 | 5.0 | 70.0     | 17.0                | 40.0 | M16 x 1.5  | 32.0 | G 1/4       | 14.0 | 8.5 | 19.1 | 10.0 | 20.0 |

#### TRUNNION MOUNT ACCESSORY





#### NOTES:

- 1) DIMENSIONS SHOWN ASSUME NO SWITCH BRACKETS ARE INSTALLED.
- 2) TRUNNION MOUNT INCOMPATIBLE ON 25 mm STROKE UNITS WITH A SINGLE SWITCH.
- TRUNNION MOUNT INCOMPATIBLE ON 25 mm AND 50 mm STROKE UNITS WITH TWO SWITCHES.
- 4) TRUNNION INSTALLATION REQUIRES END USER TO INSTALL.

| BORE | PART NO.       | Ø TD E9 | TK MAX | TL** MAX | TM MAX | UW MAX | XV MIN |
|------|----------------|---------|--------|----------|--------|--------|--------|
| 32   | 85841-032-00-1 | 12      | 25     | 25       | 53     | 65     | 73     |
| 40   | 85841-040-00-1 | 16      | 28     | 25       | 63     | 75     | 82.5   |
| 50   | 85841-050-00-1 | 16      | 28     | 25       | 75     | 95     | 90     |

\* TM max for bore size 32 mm does not conform to ISO 6431 (MT4) and ISO 15552 (MT4)
\*\*\* TL max dimensions do not conform to ISO 6431 (MT4) and ISO 15552 (MT4)

#### **SWITCHES AND BRACKETS**

#### **BRACKETS**

| BORE | SWITCH BRACKET NO. |
|------|--------------------|
| 32   | 85843-01           |
| 40   | 85843-01           |
| 50   | 85843-03           |

Includes one bracket.

#### **CORDSETS**

| 001100210 |                 |  |  |  |  |  |  |  |  |
|-----------|-----------------|--|--|--|--|--|--|--|--|
| MODEL NO. | CABLE LENGTH    |  |  |  |  |  |  |  |  |
| 63549-02  | 78.74 in [2 m]  |  |  |  |  |  |  |  |  |
| 63549-05  | 196.85 in [5 m] |  |  |  |  |  |  |  |  |

Includes one cordset.

#### **SWITCHES**

| 0111101120           |                                                   |  |  |  |  |  |  |
|----------------------|---------------------------------------------------|--|--|--|--|--|--|
| PART NO. DESCRIPTION |                                                   |  |  |  |  |  |  |
| 85844-0              | Reed, DC 5-30 V, 50 mA w/Quick Connect            |  |  |  |  |  |  |
| 85844-2              | Reed, DC 5-30 V, 50 mA w/2 m cable                |  |  |  |  |  |  |
| 85845-0              | Solid State NPN, DC 5-30 V, 50 mA w/Quick Connect |  |  |  |  |  |  |
| 85845-2              | Solid State NPN, DC 5-30 V, 50 mA w/2 m cable     |  |  |  |  |  |  |
| 85846-0              | Solid State PNP, DC 5-30 V, 50 mA w/Quick Connect |  |  |  |  |  |  |
| 85846-2              | Solid State PNP, DC 5-30 V, 50 mA w/2 m cable     |  |  |  |  |  |  |

Includes one switch.

All dimensions are reference only unless specifically toleranced.

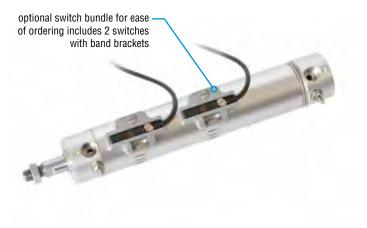


#### PILLOW BLOCK MOUNTING WITH RIGID BEARINGS **REAR FORK MOUNTING** (BMP4, CETOP RP 107P) (MP2 PER VDMA 24562) **FASTENER MOUNTING** BORE STD KIT NO. **MP2 PIVOT PINS** BORE STD KIT NO. -Z1 KIT NO. (MX1) 32 62818-001-00 52485-01-1 52485-01-3 BORE STD KIT NO. 32 -Z1 KIT NO. 40 62818-002-00 BORE STD KIT NO. -Z1 KIT NO. 52485-02-1 52485-02-3 32 52490-01-1 52490-01-3 50 62818-003-00 32 63480-01-1 63480-01-3 52485-03-1 52485-03-3 50 52490-02-3 52490-02-1 40 63480-01-1 63480-01-3 40 50 52490-03-1 52490-03-3 NOTE: Includes pivot pin hardware. 50 63480-02-1 63480-02-3 RECTANGULAR **FLANGE MOUNTING** BORE STD KIT NO. -Z1 KIT NO. 32 52484-01-1 52484-01-3 52484-02-1 52484-02-3 40 52484-03-1 52484-03-3 **REAR MALE HINGE MOUNTING** MP4 **BASE MOUNTING** BORE STD KIT NO. -Z1 KIT NO. BORE STD KIT NO. -Z1 KIT NO. 32 52486-01-1 52486-01-3 00 32 52487-01-1 52487-01-3 40 52486-02-1 52486-02-3 52487-02-3 40 52487-02-1 50 52486-03-1 52486-03-3 50 52487-03-1 52487-03-3 **ROD CLEVIS MOUNTING** (DIN 8140) BORE STD KIT NO. -Z1 KIT NO. 52492-01-1 52492-01-3 **FASTENER MOUNTING (MX1)** 52492-02-1 52492-02-3 BORE STD KIT NO. -Z1 KIT NO. 52492-03-1 52492-03-3 32 63480-01-1 63480-01-3 **ROD EYE WITH SPHERICAL** 40 63480-01-1 63480-01-3 BEARING (DIN 8139) 50 63480-02-1 63480-02-3 BORE STD KIT NO. 32 52493-01-1 40 52493-02-1

52493-03-1

50

### PNEUMATIC ROUND BODY CYLINDER

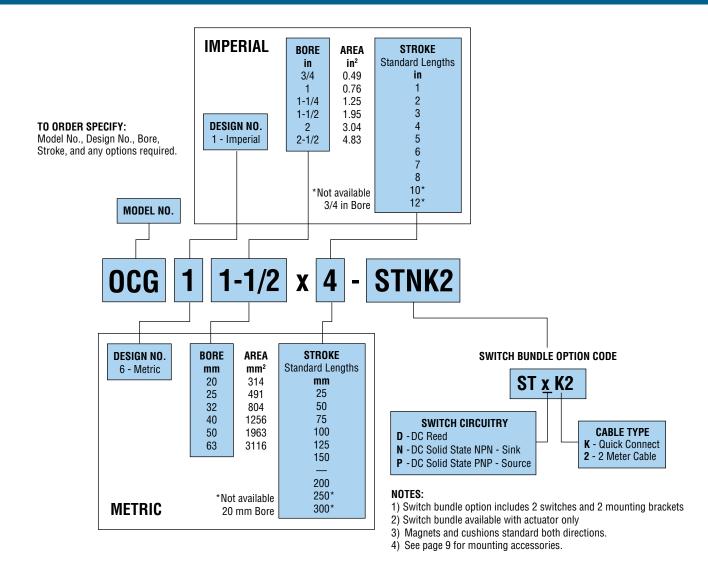

# OCG

#### **Major Benefits**

- Imperial and metric models to match machine builders' specifications
- · Magnets standard for switch sensing capability
- · Standard cushions to reduce end of travel impact
- 6 bore sizes with 10 stroke lengths available to fit a variety of applications
- · Drop-in mounting to match global standard








| COMPONENT        | MATERIALS               |  |  |  |  |
|------------------|-------------------------|--|--|--|--|
| HEAD & CAP       | Anadizad Aluminum Allau |  |  |  |  |
| CYLINDER TUBE    | Anodized Aluminum Alloy |  |  |  |  |
| ROD SEAL         |                         |  |  |  |  |
| PISTON SEAL      | NBR                     |  |  |  |  |
| 0-RINGS          | NBK                     |  |  |  |  |
| CUSHION SEAL     |                         |  |  |  |  |
| CUSHION NEEDLE   | Brass                   |  |  |  |  |
| PISTON WEAR RING | PTFE                    |  |  |  |  |
| ROD BUSHING      | PTFE and Bronze Alloy   |  |  |  |  |
| ROD NUT          | Carbon Steel            |  |  |  |  |
| PISTON ROD*      | Garbon Steel            |  |  |  |  |

<sup>\*</sup>Stainless steel sizes 3/4", 1", 20 mm and 25 mm

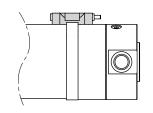


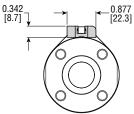
# **ORDERING DATA:** Series OCG Cylinders



#### REPAIR KITS

| BORE S | IZE | PART NO. |
|--------|-----|----------|
| in     | mm  | PANT NU. |
| 3/4    | 20  | 87000-01 |
| 1      | 25  | 87000-02 |
| 1-1/4  | 32  | 87000-03 |
| 1-1/2  | 40  | 87000-04 |
| 2      | 50  | 87000-05 |
| 2-1/2  | 63  | 87000-06 |


#### **SWITCHES**


| PART NO.             | DESCRIPTION                                       |  |  |  |  |  |  |
|----------------------|---------------------------------------------------|--|--|--|--|--|--|
| 85844-0              | Reed, DC 5-30 V, 50 mA w/Quick Connect            |  |  |  |  |  |  |
| 85844-2              | Reed, DC 5-30 V, 50 mA w/2 m cable                |  |  |  |  |  |  |
| 85845-0              | Solid State NPN, DC 5-30 V, 50 mA w/Quick Connect |  |  |  |  |  |  |
| 85845-2              | Solid State NPN, DC 5-30 V, 50 mA w/2 m cable     |  |  |  |  |  |  |
| 85846-0              | Solid State PNP, DC 5-30 V, 50 mA w/Quick Connect |  |  |  |  |  |  |
| 85846-2              | Solid State PNP, DC 5-30 V, 50 mA w/2 m cable     |  |  |  |  |  |  |
| 86999                | Round Cylinder Switch Band Bracket                |  |  |  |  |  |  |
| Includes one switch. |                                                   |  |  |  |  |  |  |

CORDSETS

| COUDSELS  |                 |  |  |  |  |  |  |  |
|-----------|-----------------|--|--|--|--|--|--|--|
| MODEL NO. | CABLE LENGTH    |  |  |  |  |  |  |  |
| 63549-02  | 78.74 in [2 m]  |  |  |  |  |  |  |  |
| 63549-05  | 196.85 in [5 m] |  |  |  |  |  |  |  |

Includes one cordset.

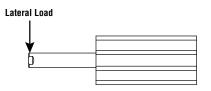




### **CAD & Sizing Assistance**

Use PHD's free online Product Sizing and CAD Configurator at **phdinc.com/myphd** 

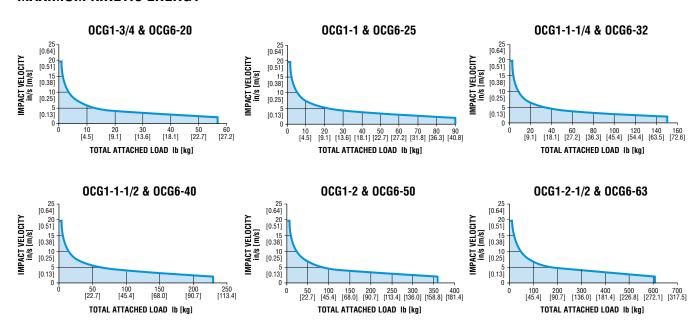



### **ENGINEERING DATA:** Series OCG Cylinders

| SPECIFICATIONS         | SERIES OCG CYLINDER               |
|------------------------|-----------------------------------|
| OPERATING AIR PRESSURE | 8-140 psi [0.5-9.7 bar]           |
| TEMPERATURE LIMITS     | 32°-140°F [0°-60°C]               |
| VELOCITY               | 2-20 in/s [50-500 mm/s]           |
| RATED LIFE             | 3 million cycles                  |
| LUBRICATION            | Factory lubricated for rated life |

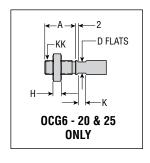
| BORE SIZE |        | ROD<br>DIAMETER |       | ROD<br>DIRECTION |         | PISTON<br>Ea | BASE V       | VEIGHT | ADDER PER<br>1 in [25 mm] |        |       |        |         |      |      |      |      |      |
|-----------|--------|-----------------|-------|------------------|---------|--------------|--------------|--------|---------------------------|--------|-------|--------|---------|------|------|------|------|------|
| in        | mm     | in mm           |       | DINLOTION        | in²     | mm²          | lb           | kg     | lb                        | kg     |       |        |         |      |      |      |      |      |
| 3/4       | 20     | 0.315           | 8     | Extend           | 0.49    | 314          | 0.20         | 0.09   | 0.06                      | 0.03   |       |        |         |      |      |      |      |      |
| 3/4       | 20     | 0.515           | 0     | Retract          | 0.41    | 264          | 0.20         | 0.09   | 0.00                      | 0.03   |       |        |         |      |      |      |      |      |
| 1         | 25     | 0.394           | 0.004 | 10               | Extend  | 0.76         | 491          | 0.05   | 0.16                      | 0.08   | 0.04  |        |         |      |      |      |      |      |
| 1         | 1 20 0 |                 | 10    | Retract          | 0.64    | 412          | 0.35         | 0.10   | 0.00                      | 0.04   |       |        |         |      |      |      |      |      |
| 1-1/4     | 32     | 0.472           | 0.470 | 0.470            | 0.470   | 0.470        | 0 472        | 0 472  | 0.472                     | 0 479  | 12    | Extend | 1.25    | 804  | 0.55 | 0.25 | 0.10 | 0.05 |
| 1-1/4     | 32     |                 | 12    | Retract          | 1.07    | 691          | 0.55         | 0.25   | 0.10                      | 0.03   |       |        |         |      |      |      |      |      |
| 1-1/2     | 40     | 0.630           | 0.630 | 0.630            | 0.630   | 0.630        | 0.630        | 0.630  | 16                        | Extend | 1.95  | 1256   | 0.90    | 0.41 | 0.17 | 0.08 |      |      |
| 1-1/2     | 40     |                 |       |                  |         |              |              |        | 0.030                     | 0.030  | 0.030 | 50 16  | Retract | 1.64 | 1055 | 0.90 | 0.41 | 0.17 |
| 2         | 50     | 0.787           | 0 707 | 0.707            | 20      | Extend       | 3.04         | 1963   | 1.68                      | 0.76   | 0.25  | 0.11   |         |      |      |      |      |      |
| 2         | 50     |                 | 20    | Retract          | 2.56    | 1649         | 1.00         | 0.76   | 0.23                      | 0.11   |       |        |         |      |      |      |      |      |
| 0 1/0     | CO     | 0.787           | 20    | Extend           | 4.83    | 3116         | 0.24         | 1.00   | 0.00                      | 0.13   |       |        |         |      |      |      |      |      |
| 2-1/2     | 63     |                 |       | 20               | Retract | 4.34         | 34 2802 2.34 |        | 1.06                      |        | 0.29  |        |         |      |      |      |      |      |

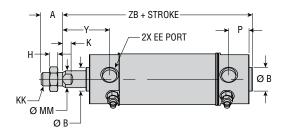
### **Application & Sizing Assistance**

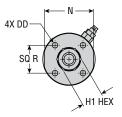

Use PHD's free online Product Sizing and Application at www.phdinc.com/apps/sizing

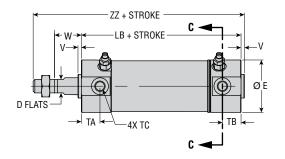


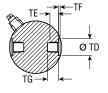
#### **MAXIMUM LATERAL LOAD BY STROKE**

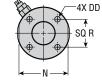

| BORE  | SIZE | _   | in<br>mm |     | in<br>mm |     | in<br>mm | _  | in<br>mm | _  | in<br>mm |      | in<br>mm | 7    | in<br>— | _   | in<br>mm |     | in<br>mm |    | in<br>mm |
|-------|------|-----|----------|-----|----------|-----|----------|----|----------|----|----------|------|----------|------|---------|-----|----------|-----|----------|----|----------|
| in    | mm   | 0Z  | g        | 0Z  | g        | 0Z  | g        | 0Z | g        | 0Z | g        | 0Z   | g        | 0Z   | g       | 0Z  | g        | 0Z  | g        | 0Z | g        |
| 3/4   | 20   | 18  | 505      | 15  | 414      | 12  | 337      | 10 | 275      | 8  | 228      | 6.9  | 195      | 6.3  | 177     | 6.2 | 174      | _   | _        | _  | _        |
| 1     | 25   | 24  | 675      | 20  | 563      | 17  | 475      | 14 | 408      | 13 | 358      | 11.4 | 323      | 10.5 | 298     | 9.9 | 281      | 9.1 | 257      | 8  | 225      |
| 1-1/4 | 32   | 43  | 1223     | 35  | 983      | 28  | 798      | 23 | 661      | 20 | 564      | 18   | 497      | 16   | 453     | 15  | 425      | 13  | 379      | 10 | 295      |
| 1-1/2 | 40   | 55  | 1552     | 47  | 1323     | 40  | 1141     | 35 | 999      | 31 | 889      | 29   | 808      | 26   | 747     | 25  | 701      | 22  | 628      | 19 | 540      |
| 2     | 50   | 86  | 2429     | 76  | 2157     | 68  | 1925     | 61 | 1729     | 55 | 1565     | 50   | 1427     | 46   | 1311    | 43  | 1211     | 37  | 1043     | 31 | 882      |
| 2-1/2 | 63   | 140 | 3959     | 121 | 3435     | 106 | 3001     | 94 | 2647     | 83 | 2362     | 76   | 2138     | 69   | 1966    | 65  | 1834     | 59  | 1659     | 54 | 1535     |


#### **MAXIMUM KINETIC ENERGY**





# **DIMENSIONS:** Series OCG Cylinders



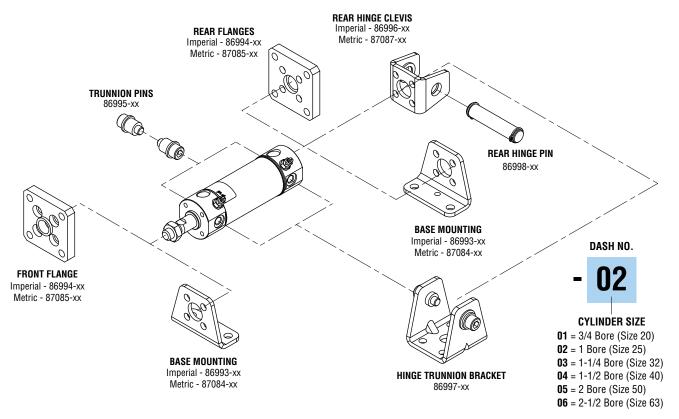












SECTION C-C 4X EACH FEATURE DIMENSION

| LETTER | IMPERIAL                      |                              |                              |                               |                              |                              |                         | METRIC                  |                         |                         |                         |                         |  |
|--------|-------------------------------|------------------------------|------------------------------|-------------------------------|------------------------------|------------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|--|
| DIM    | 3/4 in                        | 1 in                         | 1-1/4 in                     | 1-1/2 in                      | 2 in                         | 2-1/2 in                     | 20 mm                   | 25 mm                   | 32 mm                   | 40 mm                   | 50 mm                   | 63 mm                   |  |
| Α      | 0.50                          | 0.50                         | 0.75                         | 0.75                          | 0.88                         | 0.88                         | 18                      | 22                      | 22                      | 30                      | 35                      | 35                      |  |
| В      | 0.472<br>+0.0000<br>/-0.0011  | 0.551<br>+0.0000<br>/-0.0011 | 0.709<br>+0.0000<br>/-0.0011 | 0.984<br>+0.0000<br>/- 0.0013 | 1.181<br>+0.0000<br>/-0.0013 | 1.260<br>+0.0000<br>/-0.0015 | 12<br>+0.00<br>/-0.05   | 14<br>+0.00<br>/-0.05   | 18<br>+0.00<br>/- 0.05  | 25<br>+0.00<br>/-0.05   | 30<br>+0.00<br>/-0.05   | 32<br>+0.00<br>/-0.05   |  |
| D      | 0.24                          | 0.31                         | 0.39                         | 0.55                          | 0.71                         | 0.71                         | 6                       | 8                       | 10                      | 14                      | 18                      | 18                      |  |
| DD     | 8-32<br>x 0.28 DP             | 10-32<br>x 0.30 DP           | 10-32<br>x 0.30 DP           | 1/4-28<br>x 0.47 DP           | 5/16-24<br>x 0.63 DP         | 3/8-24<br>x 0.63 DP          | M4 x 0.7<br>x 7 DP      | M5 x 0.8<br>x 7.5 DP    | M5 x 0.8<br>x 8 DP      | M6 x 1.0<br>x 12 DP     | M8 x 1.25<br>x 16 DP    | M10 x 1.5<br>x 16 DP    |  |
| E      | 1.02                          | 1.22                         | 1.50                         | 1.85                          | 2.28                         | 2.83                         | 26                      | 31                      | 38                      | 47                      | 58                      | 72                      |  |
| EE     | 1/8 NPT                       | 1/8 NPT                      | 1/8 NPT                      | 1/8 NPT                       | 1/4 NPT                      | 1/4 NPT                      | Rc 1/8                  | Rc 1/8                  | Rc 1/8                  | Rc 1/8                  | Rc 1/4                  | Rc 1/4                  |  |
| Н      | 0.16                          | 0.19                         | 0.26                         | 0.26                          | 0.32                         | 0.32                         | 5                       | 6                       | 6                       | 8                       | 11                      | 11                      |  |
| H1     | 0.44                          | 0.50                         | 0.69                         | 0.69                          | 0.75                         | 0.75                         | 13                      | 17                      | 17                      | 22                      | 27                      | 27                      |  |
| K      | 0.157 0.197 0.217 0.236 0.276 |                              | 0.276                        | 0.276                         | 4                            | 5                            | 5.5                     | 6                       | 7                       | 7                       |                         |                         |  |
| KK     | 1/4-28                        | 5/16-24                      | 7/16-20                      | 7/16-20                       | 1/2-20                       | 1/2-20                       | M8 x<br>1.25            | M10 x<br>1.25           | M10 x<br>1.25           | M14 x<br>1.5            | M18 x<br>1.5            | M18 x<br>1.5            |  |
| LB     | 2.72                          | 2.72                         | 2.80                         | 3.07                          | 3.54                         | 3.54                         | 69                      | 69                      | 71                      | 78                      | 90                      | 90                      |  |
| MM     | 0.315                         | 0.394                        | 0.472                        | 0.630                         | 0.787                        | 0.787                        | 8                       | 10                      | 12                      | 16                      | 20                      | 20                      |  |
| N      | 0.94                          | 1.14                         | 1.42                         | 1.73                          | 2.17                         | 2.72                         | 24                      | 29                      | 36                      | 44                      | 55                      | 69                      |  |
| Р      | 0.47                          | 0.47                         | 0.43                         | 0.47                          | 0.51                         | 0.51                         | 12                      | 12                      | 11                      | 12                      | 13                      | 13                      |  |
| R      | 0.55 ±0.004                   | 0.65 ±0.004                  | 0.79 ±0.004                  | 1.02 ±0.004                   | 1.26 ±0.004                  | 1.50 ±0.004                  | 14 ±0.1                 | 16.5 ±0.1               | 20 ±0.1                 | 26 ±0.1                 | 32 ±0.1                 | 38 ±0.1                 |  |
| TA     | 0.433                         | 0.433                        | 0.433                        | 0.472                         | 0.512                        | 0.512                        | 11                      | 11                      | 11                      | 12                      | 13                      | 13                      |  |
| TB     | 0.433                         | 0.433                        | 0.394                        | 0.394                         | 0.472                        | 0.472                        | 11                      | 11                      | 10                      | 10                      | 12                      | 12                      |  |
| TC     | M5 x 0.8                      | M6 x 0.75                    | M8 x 1.0                     | M10 x 1.25                    | M12 x 1.25                   | M14 x 1.5                    | M5 x 0.8                | M6 x 0.75               | M8 x 1.0                | M10 x 1.25              | M12 x 1.25              | M14 X 1.5               |  |
| TD     | 0.315<br>+0.0014<br>/-0.000   | 0.394<br>+0.0014<br>/-0.000  | 0.472<br>+0.0017<br>/-0.000  | 0.551<br>+0.0017<br>/-0.000   | 0.630<br>+0.0017<br>/-0.000  | 0.709<br>+0.0017<br>/-0.000  | 8<br>+0.036<br>/- 0.000 | 10<br>+0.036<br>/-0.000 | 12<br>+0.043<br>/-0.000 | 14<br>+0.043<br>/-0.000 | 16<br>+0.043<br>/-0.000 | 18<br>+0.043<br>/-0.000 |  |
| TE     | 0.157                         | 0.197                        | 0.217                        | 0.240                         | 0.295                        | 0.453                        | 4                       | 5                       | 5.5                     | 6                       | 7.5                     | 11.5                    |  |
| TF     | 0.020                         | 0.039                        | 0.049                        | 0.049                         | 0.079                        | 0.118                        | 0.5                     | 1                       | 1.25                    | 1.25                    | 2                       | 3                       |  |
| TG     | 0.217                         | 0.256                        | 0.295                        | 0.335                         | 0.394                        | 0.571                        | 5.5                     | 6.5                     | 7.5                     | 8.5                     | 10                      | 14.5                    |  |
| V      | 0.08                          | 0.08                         | 0.08                         | 0.08                          | 0.08                         | 0.08                         | 2                       | 2                       | 2                       | 2                       | 2                       | 2                       |  |
| W      | 0.50                          | 0.62                         | 0.88                         | 0.88                          | 1.19                         | 1.19                         | 17                      | 18                      | 18                      | 20                      | 23                      | 23                      |  |
| Υ      | 0.97                          | 1.09                         | 1.35                         | 1.39                          | 1.74                         | 1.74                         | 29                      | 30                      | 30                      | 33                      | 37                      | 37                      |  |
| ZB     | 3.30                          | 3.42                         | 3.76                         | 4.03                          | 4.81                         | 4.81                         | 88                      | 89                      | 91                      | 100                     | 115                     | 115                     |  |
| ZZ     | 3.80                          | 3.92                         | 4.51                         | 4.78                          | 5.69                         | 5.69                         | 106                     | 111                     | 113                     | 130                     | 150                     | 150                     |  |

All dimensions are reference only unless specifically toleranced.



### **ACCESSORIES:** Series OCG Cylinders



#### **MOUNTING ATTACHMENTS**

| BASE PA  | RT NO. | CYLINDER SIZE | DESCRIPTION                   |  |  |
|----------|--------|---------------|-------------------------------|--|--|
| IMPERIAL | METRIC | DASH NO.      | DESCRIPTION                   |  |  |
| 86993    | 87084  | -xx           | Base Mounting                 |  |  |
| 86994    | 87085  | -xx           | Front or Rear Flange Mounting |  |  |
| 86995    | 86995  | -xx           | Trunnions                     |  |  |
| 86996    | 87087  | -xx           | Rear Hinge Clevis             |  |  |
| 86997    | 86997  | -xx           | Rear Hinge & Trunnion Bracket |  |  |
| 86998    | 86998  | -XX           | Rear Hinge Pin                |  |  |

Example: 86993-03 is a base mounting kit for size 1-1/4 bore cylinders.

### RECOMMENDED ATTACHMENT MOUNTING TORQUES

| MODITING TOTAGES |      |          |          |                 |     |  |  |  |  |  |
|------------------|------|----------|----------|-----------------|-----|--|--|--|--|--|
| BORE             | SIZE | MOUNTIN  | G TORQUE | TRUNNION TORQUE |     |  |  |  |  |  |
| in               | mm   | in-lb Nm |          | in-lb           | Nm  |  |  |  |  |  |
| 3/4              | 20   | 13.3     | 1.5      | 20              | 2.2 |  |  |  |  |  |
| 1                | 25   | 26       | 3        | 32              | 3.6 |  |  |  |  |  |
| 1-1/4            | 32   | 26       | 3        | 80              | 9   |  |  |  |  |  |
| 1-1/2            | 40   | 43       | 5        | 160             | 18  |  |  |  |  |  |
| 2                | 50   | 104      | 12       | 280             | 32  |  |  |  |  |  |
| 2-1/2            | 63   | 217      | 25       | 460             | 52  |  |  |  |  |  |

#### **METRIC**



#### ROD EYE WITH SPHERICAL BEARING (DIN 8139)

| DEMINIA (BIN 6166) |                  |  |  |  |  |  |  |  |
|--------------------|------------------|--|--|--|--|--|--|--|
| CYLINDER           | STANDARD KIT NO. |  |  |  |  |  |  |  |
| OCG6-20            | 52493-05-1       |  |  |  |  |  |  |  |
| OCG6-25            | 52493-01-1       |  |  |  |  |  |  |  |
| 0CG6-32            | 52493-01-1       |  |  |  |  |  |  |  |



#### **ROD CLEVIS MOUNTING (DIN 8140)**

| CYLINDER | STANDARD KIT NO. | -Z1 KIT NO. |  |  |  |
|----------|------------------|-------------|--|--|--|
| OCG6-20  | 52492-05-1       | 52492-05-3  |  |  |  |
| OCG6-25  | 52492-01-1       | 52492-01-3  |  |  |  |
| OCG6-32  | 52492-01-1       | 52492-01-3  |  |  |  |

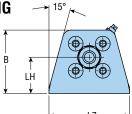
#### **IMPERIAL**

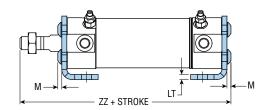


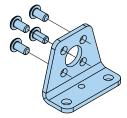
#### **ROD CLEVIS MOUNTING**

| CYLINDER   | STANDARD KIT NO. |  |  |  |  |  |  |  |
|------------|------------------|--|--|--|--|--|--|--|
| OCG1 3/4   | 12904            |  |  |  |  |  |  |  |
| 0CG1 1     | 12906            |  |  |  |  |  |  |  |
| OCG1 1-1/4 | 12910            |  |  |  |  |  |  |  |
| OCG1 1-1/2 | 12910            |  |  |  |  |  |  |  |
| 0CG1 2     | 12911            |  |  |  |  |  |  |  |
| 0CG1 2-1/2 | 12911            |  |  |  |  |  |  |  |




#### ROD FYF MOUNTING


| HOD LIE MOUNTING |                  |  |  |  |  |  |  |  |
|------------------|------------------|--|--|--|--|--|--|--|
| CYLINDER         | STANDARD KIT NO. |  |  |  |  |  |  |  |
| OCG1 3/4         | 1075-01          |  |  |  |  |  |  |  |
| 0CG1 1           | 1075-04          |  |  |  |  |  |  |  |
| OCG1 1-1/4       | 1375-02          |  |  |  |  |  |  |  |
| OCG1 1-1/2       | 1375-02          |  |  |  |  |  |  |  |
| 0CG1 2           | 1375-03          |  |  |  |  |  |  |  |
| 0CG1 2-1/2       | 1375-03          |  |  |  |  |  |  |  |

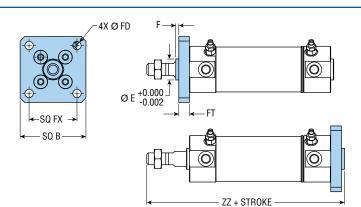


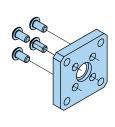

71

#### **BASE MOUNTING**









**NOTE:** Kit includes one base mounting bracket and fasteners.

| Z _      | LS + STRO          | KE → - X→                             |
|----------|--------------------|---------------------------------------|
|          | Y <del>←</del>     | →  Y ←                                |
|          | 2X Ø L(            | 2                                     |
|          | · •                | , , , , , , , , , , , , , , , , , , , |
| X HD     | <del></del>        | <b></b>                               |
| <u> </u> |                    |                                       |
|          | ₩ <b>-</b> 4X Ø LD | → W ←                                 |

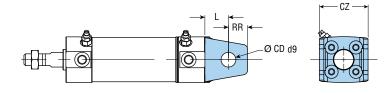
| LETTED        |          |          | IMPE     | RIAL     |          |          | METRIC   |          |          |          |          |          |
|---------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| LETTER<br>DIM | 3/4 in   | 1 in     | 1-1/4 in | 1-1/2 in | 2 in     | 2-1/2 in | 20 mm    | 25 mm    | 32 mm    | 40 mm    | 50 mm    | 63 mm    |
| DIIVI         | 86993-01 | 86993-02 | 86993-03 | 86993-04 | 86993-05 | 86993-06 | 87084-01 | 87084-02 | 87084-03 | 87084-04 | 87084-05 | 87084-06 |
| В             | 1.34     | 1.52     | 1.77     | 2.15     | 2.78     | 3.25     | 34       | 38.5     | 45       | 54.5     | 70.5     | 82.5     |
| LC            | 0.16     | 0.16     | 0.16     | 0.16     | 0.20     | 0.20     | 4        | 4        | 4        | 4        | 5        | 5        |
| LD            | 0.24     | 0.24     | 0.26     | 0.26     | 0.35     | 0.43     | 6        | 6        | 6.6      | 6.6      | 9        | 11       |
| LH            | 0.79     | 0.87     | 0.98     | 1.18     | 1.57     | 1.77     | 20       | 22       | 25       | 30       | 40       | 45       |
| LS            | 1.78     | 1.78     | 1.78     | 2.01     | 2.16     | 2.16     | 45       | 45       | 45       | 51       | 55       | 55       |
| LT            | 0.12     | 0.12     | 0.12     | 0.12     | 0.18     | 0.18     | 3        | 3        | 3        | 3        | 4.5      | 4.5      |
| LX            | 1.26     | 1.42     | 1.73     | 2.13     | 2.60     | 3.23     | 32       | 36       | 44       | 54       | 66       | 82       |
| LZ            | 1.73     | 1.93     | 2.28     | 2.80     | 3.39     | 4.17     | 44       | 49       | 58       | 71       | 86       | 106      |
| M             | 0.09     | 0.11     | 0.11     | 0.13     | 0.17     | 0.22     | 2.2      | 2.8      | 2.8      | 3.3      | 4.4      | 5.5      |
| W             | 0.39     | 0.39     | 0.39     | 0.39     | 0.69     | 0.69     | 10       | 10       | 10       | 10       | 17.5     | 17.5     |
| X             | 0.59     | 0.59     | 0.63     | 0.65     | 0.87     | 0.87     | 15       | 15       | 16       | 16.5     | 22       | 22       |
| Υ             | 0.28     | 0.28     | 0.31     | 0.33     | 0.43     | 0.51     | 7        | 7        | 8        | 8.5      | 11       | 13       |
| Z             | 1.47     | 1.59     | 2.14     | 2.16     | 2.76     | 2.76     | 47       | 52       | 53       | 63.5     | 75.5     | 75.5     |
| ZZ            | 3.93     | 4.07     | 4.66     | 4.95     | 5.96     | 6.01     | 109.2    | 114.8    | 116.8    | 134.3    | 156.9    | 158      |

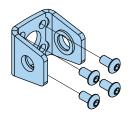
# FRONT OR REAR FLANGE MOUNTING





**NOTE:** Kit includes one flange mounting bracket and fasteners.

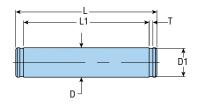

| LETTER | IMPERIAL                   |                            |                            |                            |                            |                            | METRIC             |                    |                    |                    |                    |                       |
|--------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|-----------------------|
| DIM    | 3/4 in                     | 1 in                       | 1-1/4 in                   | 1-1/2 in                   | 2 in                       | 2-1/2 in                   | 20 mm              | 25 mm              | 32 mm              | 40 mm              | 50 mm              | 63 mm                 |
| DIM    | 86994-01                   | 86994-02                   | 86994-03                   | 86994-04                   | 86994-05                   | 86994-06                   | 87085-01           | 87085-02           | 87085-03           | 87085-04           | 87085-05           | 87085-06              |
| В      | 1.57                       | 1.73                       | 2.09                       | 2.40                       | 2.99                       | 3.62                       | 40                 | 44                 | 53                 | 61                 | 76                 | 92                    |
| Е      | 0.472<br>+0.000<br>/-0.002 | 0.551<br>+0.000<br>/-0.002 | 0.709<br>+0.000<br>/-0.002 | 0.984<br>+0.000<br>/-0.002 | 1.181<br>+0.000<br>/-0.002 | 1.260<br>+0.000<br>/-0.002 | 12<br>+0.00 /-0.05 | 14<br>+0.00 /-0.05 | 18<br>+0.00 /-0.05 | 25<br>+0.00 /-0.05 | 30<br>+0.00 /-0.05 | 32<br>+0.00/<br>-0.05 |
| F      | 0.08                       | 0.08                       | 0.08                       | 0.08                       | 0.08                       | 0.08                       | 2                  | 2                  | 2                  | 2                  | 2                  | 2                     |
| FX     | 1.10                       | 1.26                       | 1.50                       | 1.81                       | 2.28                       | 2.76                       | 28                 | 32                 | 38                 | 46                 | 58                 | 70                    |
| FD     | 0.22                       | 0.22                       | 0.26                       | 0.26                       | 0.35                       | 0.43                       | 5.5                | 5.5                | 6.6                | 6.6                | 9                  | 11                    |
| FT     | 0.24                       | 0.28                       | 0.28                       | 0.31                       | 0.35                       | 0.35                       | 6                  | 7                  | 7                  | 8                  | 9                  | 9                     |
| ZZ     | 4.04                       | 4.20                       | 4.79                       | 5.09                       | 6.04                       | 6.04                       | 112                | 118                | 120                | 138                | 159                | 159                   |

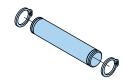

All dimensions are reference only unless specifically toleranced.



# MOUNTING & ACCESSORIES: Series OCG Cylinders

### **REAR CLEVIS HINGE MOUNTING**




**NOTE:** Kit includes rear clevis hinge mounting bracket and fasteners.

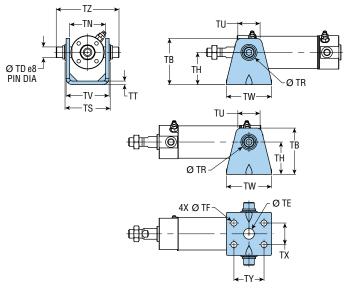
| LETTED        |          |          | IMPE     | RIAL     |          |          |          |          | MET      | TRIC     |          |          |
|---------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| LETTER<br>DIM | 3/4 in   | 1 in     | 1-1/4 in | 1-1/2 in | 2 in     | 2-1/2 in | 20 mm    | 25 mm    | 32 mm    | 40 mm    | 50 mm    | 63 mm    |
| DIM           | 86996-01 | 86996-02 | 86996-03 | 86996-04 | 86996-05 | 86996-06 | 87087-01 | 87087-02 | 87087-03 | 87087-04 | 87087-05 | 87087-06 |
| CD d9         | 0.315    | 0.394    | 0.472    | 0.551    | 0.630    | 0.709    | 8        | 10       | 12       | 14       | 16       | 18       |
| CZ            | 1.14     | 1.30     | 1.57     | 1.93     | 2.36     | 2.91     | 29       | 33       | 40       | 49       | 60       | 74       |
| L             | 0.55     | 0.63     | 0.79     | 0.87     | 0.98     | 1.18     | 14       | 16       | 20       | 22       | 25       | 30       |
| RR            | 0.43     | 0.51     | 0.59     | 0.71     | 0.79     | 0.87     | 11       | 13       | 15       | 18       | 20       | 22       |

### **REAR HINGE PIN**





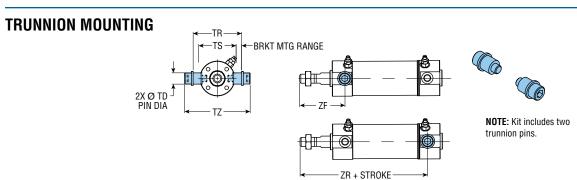
**NOTE:** For use with rear clevis hinge mount. Kit includes two retaining rings and one rear hinge pin.


| LETTER |          |          | IMPE     | RIAL     |          |          |          |          | ME       | TRIC     |          |                 |
|--------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-----------------|
| DIM    | 3/4 in   | 1 in     | 1-1/4 in | 1-1/2 in | 2 in     | 2-1/2 in | 20 mm    | 25 mm    | 32 mm    | 40 mm    | 50 mm    | 63 mm           |
| DIIVI  | 86998-01 | 86998-02 | 86998-03 | 86998-04 | 86998-05 | 86998-06 | 86998-01 | 86998-02 | 86998-03 | 86998-04 | 86998-05 | <b>86998-06</b> |
| D d9   | 0.315    | 0.394    | 0.472    | 0.551    | 0.630    | 0.709    | 8        | 10       | 12       | 14       | 16       | 18              |
| D1     | 0.30     | 0.38     | 0.45     | 0.53     | 0.60     | 0.67     | 7.6      | 9.6      | 11.5     | 13.4     | 15.2     | 17              |
| L      | 1.71     | 1.89     | 2.34     | 2.81     | 3.39     | 4.15     | 43.4     | 48       | 59.4     | 71.4     | 86       | 105.4           |
| L1     | 1.52     | 1.68     | 2.13     | 2.56     | 3.13     | 3.85     | 38.6     | 42.6     | 54       | 65       | 79.6     | 97.8            |
| Т      | 0.04     | 0.05     | 0.05     | 0.05     | 0.05     | 0.05     | 0.9      | 1.15     | 1.15     | 1.15     | 1.15     | 1.35            |

All dimensions are reference only unless specifically toleranced.



# MOUNTING & ACCESSORIES: Series OCG Cylinders


### HINGE AND TRUNNION BRACKET





**NOTE:** Kit includes two trunnion pins and one trunnion bracket. Omit trunnion pins when used with rear clevis hinge mount.

|               |                              |                              | IMPE                         | RIAL                         |                              |                            |                 |                 | MET             | TRIC            |                 |                 |
|---------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|----------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| LETTER<br>DIM | 3/4 in                       | 1 in                         | 1-1/4 in                     | 1-1/2 in                     | 2 in                         | 2-1/2 in                   | 20 mm           | 25 mm           | 32 mm           | 40 mm           | 50 mm           | 63 mm           |
| DIM           | 86997-01                     | 86997-02                     | 86997-03                     | 86997-04                     | 86997-05                     | 86997-06                   | 86997-01        | 86997-02        | 86997-03        | 86997-04        | 86997-05        | 86997-06        |
| TB            | 1.42                         | 1.69                         | 1.97                         | 2.28                         | 2.76                         | 3.23                       | 36              | 43              | 50              | 58              | 70              | 82              |
| TE            | 0.394<br>+0.0039<br>/-0.0000 | 0.394<br>+0.0039<br>/-0.0000 | 0.394<br>+0.0039<br>/-0.0000 | 0.394<br>+0.0039<br>/-0.0000 | 0.787<br>+0.0039<br>/-0.0000 | 0.787<br>+0.0039<br>/00000 | 10<br>+0.1/-0.0 | 10<br>+0.1/-0.0 | 10<br>+0.1/-0.0 | 10<br>+0.1/-0.0 | 20<br>+0.1/-0.0 | 20<br>+0.1/-0.0 |
| TF            | 0.22                         | 0.22                         | 0.26                         | 0.26                         | 0.35                         | 0.43                       | 5.5             | 5.5             | 6.6             | 6.6             | 9               | 11              |
| TH            | 0.98<br>±0.0039              | 1.18<br>±0.0039              | 1.38<br>±0.0039              | 1.57<br>±0.0039              | 1.97<br>±0.0039              | 2.36<br>±0.0039            | 25 ±0.1         | 30 ±0.1         | 35 ±0.1         | 40 ±0.1         | 50 ±0.1         | 60 ±0.1         |
| TN            | 1.15                         | 1.30                         | 1.59                         | 1.94                         | 2.38                         | 2.94                       | 29.3            | 33.1            | 40.4            | 49.2            | 60.4            | 74.6            |
| TR            | 0.51                         | 0.59                         | 0.67                         | 0.83                         | 0.94                         | 1.02                       | 13              | 15              | 17              | 21              | 24              | 26              |
| TT            | 0.13                         | 0.13                         | 0.18                         | 0.18                         | 0.24                         | 0.31                       | 3.2             | 3.2             | 4.5             | 4.5             | 6               | 8               |
| TU            | 0.71                         | 0.81                         | 0.93                         | 1.07                         | 1.17                         | 1.35                       | 18.1            | 20.7            | 23.6            | 27.3            | 29.7            | 34.3            |
| TV            | 1.41                         | 1.57                         | 1.94                         | 2.30                         | 2.85                         | 3.56                       | 35.8            | 39.8            | 49.4            | 58.4            | 72.4            | 90.4            |
| TW            | 1.65                         | 1.65                         | 1.89                         | 2.20                         | 2.52                         | 2.91                       | 42              | 42              | 48              | 56              | 64              | 74              |
| TX            | 0.63                         | 0.79                         | 0.87                         | 1.18                         | 1.42                         | 1.81                       | 16              | 20              | 22              | 30              | 36              | 36              |
| TY            | 1.10                         | 1.10                         | 1.10                         | 1.18                         | 1.42                         | 1.81                       | 28              | 28              | 28              | 30              | 36              | 46              |
| TS            | 1.50                         | 1.65                         | 2.06                         | 2.50                         | 3.10                         | 3.80                       | 38              | 42              | 52.4            | 63.4            | 78.8            | 96.6            |
| TZ            | 2.00                         | 2.27                         | 2.88                         | 3.52                         | 4.29                         | 5.15                       | 51              | 57.9            | 73.3            | 89.5            | 109.2           | 131             |
| TD            | 0.315                        | 0.394                        | 0.472                        | 0.551                        | 0.630                        | 0.709                      | 8               | 10              | 12              | 14              | 16              | 18              |



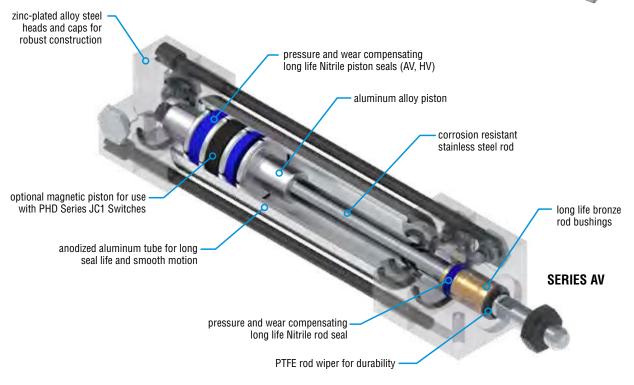
| LETTER |          |          | IMPE     | RIAL     |          |          |          |          | ME       | TRIC     |          |          |
|--------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| DIM    | 3/4 in   | 1 in     | 1-1/4 in | 1-1/2 in | 2 in     | 2-1/2 in | 20 mm    | 25 mm    | 32 mm    | 40 mm    | 50 mm    | 63 mm    |
| DIM    | 86995-01 | 86995-02 | 86995-03 | 86995-04 | 86995-05 | 86995-06 | 86995-01 | 86995-02 | 86995-03 | 86995-04 | 86995-05 | 86995-06 |
| TD e8  | 0.315    | 0.394    | 0.472    | 0.551    | 0.630    | 0.709    | 8        | 10       | 12       | 14       | 16       | 18       |
| TR     | 1.54     | 1.69     | 2.11     | 2.54     | 3.15     | 3.86     | 39       | 43       | 53.5     | 64.5     | 80       | 98       |
| TS     | 1.14     | 1.30     | 1.57     | 1.93     | 2.36     | 2.91     | 29       | 33       | 40       | 49       | 60       | 74       |
| TZ     | 2.00     | 2.27     | 2.88     | 3.52     | 4.29     | 5.15     | 51       | 57.9     | 73.3     | 89.5     | 109.2    | 131      |
| ZF     | 1.43     | 1.55     | 2.06     | 2.10     | 2.58     | 2.58     | 46       | 51       | 51       | 62       | 71       | 71       |
| ZR     | 3.28     | 3.40     | 4.03     | 4.31     | 5.14     | 5.14     | 93       | 98       | 101      | 118      | 136      | 136      |



# AV, HV, A

3/4", 1", 1-1/8" Bore

### **Major Benefits**


- · Long life design for low maintenance
- NFPA repairable for extended life providing long term savings
- Wide range of options for easy application and reduced design time
- · Wide range of mounting styles for easy installation





Cleanroom option available on Series AV and A Cylinders. See page 90.









### ORDERING DATA: Series AV, HV, A Cylinders - 3/4", 1", 1-1/8" Bore

### TO ORDER SPECIFY:

SFRIFS

HV - 1500 psi Hyd.

A - 150 psi Air

AV -150 psi Air

Spring Return/Double Rod End, Series. Mounting Style, Bore Size, Stroke, Port Control®, and any Options. Also specify rod diameter if non-standard. Rod couplings and mounting attachments must be ordered separately.

#### **BORE SIZE** 3/4" BORE 1/4" Std. Rod Dia.

1/4-28 Thread 1" BORE 5/16" Std. Rod Dia. 5/16-24 Thread

1-1/8" BORE 3/8" Std. Rod Dia. 3/8-24 Thread

### STANDARD STROKE LENGTHS

3/4" BORE 1/4" to 12"

1" BORE 1/4" to 18" 1-1/8" BORE

1/4" to 18" All in 1/4" increments

Consult PHD for longer lengths.

Options may affect unit length. See dimensional pages and option information details.

#### **CUSHION OR SHOCK PAD**

- D Cushions on both ends (see note 4)
- Cushion on rod end (see note 4)
- Cushion on cap end (see note 4)
- Shock Pads on both ends
- BR Shock Pad on rod end BC - Shock Pad on cap end

(Cushions, Shock Pads, and Spring Return are not available on the same end of cylinder. Shock Pads not available on Series HV.)

#### **OVERSIZE ROD**

To be specified only when using a non-standard diameter. Rod diameters available are shown on page 88.

# 3/8 ROD

### **SPRING RETURN**

- SC Spring on cap end SR - Spring on rod end (Strokes available in 1/4" increments up to 6".) (+)
  - See option pages.

and/or **DOUBLE ROD END** 

D - Double Rod **End Cylinders** Leave blank if not needed.

### **MOUNTING STYLE**

- F Foot Mount, c'bored thru holes B - Bottom Mount, tapped holes in
- head and cap R - Rod Mount, tapped holes on
- front face of head Thread Mount, threaded snout on
- head (shipped with mounting nut)
- RF Rod End Flange
- CF Cap End Flange
- L Pilot Mount, threaded snout and pilot diameter on head (shipped with mounting nut)
- P Pivot Mount, pivot on cap RR Tierod Mount, tierods extend out rod end
- RC Tierod Mount, tierods extend out cap end
- RRC Tierod Mount, tierods extend out both ends

### PORT CONTROL®



#### **OUT FLOW CONTROL VALVE**

P - Flow control on both ends PR - Flow control

on cap end

on head end PC - Flow control

### **OPTIONS**

- A Stroke Adjustment, 1/2" of adjustment standard (not available on Series HV)
- Magnetic Piston for Series JC1 radial sensing switches (not available on Series A)
- #2 Rod End (see page 88 for dimensions) (see note 1)
- #4 Rod End, Female thread on rod (see page 88 for dimensions) (see note 1)
- Rodlok (Rod clamping device installed.

  Not available with Z1 or on HV. See option page.)
- J #2X Rod End, twice as long as standard thread (see page 88 for dimensions)
- Extra Rod Extension, in 1/8" increments (see page 88) (see note 2)
- Coarse Thread Rod End
- (see page 88 for dimensions) (see note 1)

  M Magnetic Piston for Series JC1 reed and teachable switches (not applicable on Series A)
- Plain Rod End (see page 88 for dimensions) (see note 1)
- Q Port in Position #1, must be specified if required with mounting style "F" ("F" mounting tab on cap end)
  Ports in Position #2
- T Ports in Position #3 ("F" mounting tab on cap end)
- U Ports in Position #4
- Fluoroelastomer Seals
- W Close Tolerance Stroke, ±0.005" stroke length
- SAE Ports (Series HV Only) 3/4, 1, 1-1/8" bore
- Z1 Electroless Nickel Plate all ferrous parts excluding Rod Ends

- 1) For double rod cylinders, rod end options will be applied to both ends of cylinder.
- For double rod cylinders, -\_K extension will be applied to one end only (head end/primary mounting end).
- ① Marked options provide additional cylinder flexibility, but may alter the dimensions.
- Cushion available, but not warranted, on HV units.

### SERIES JC1xDx MAGNETIC SWITCHES

| PART NO. | DESCRIPTION                                 |
|----------|---------------------------------------------|
| JC1RDU-5 | PNP or NPN DC Reed, 5 meter cable           |
| JC1RDU-K | PNP or NPN DC Reed, Quick Connect           |
| JC1ADU-K | AC Reed, Quick Connect (M12)                |
| JC1HDP-5 | PNP (Source), Radial Sensing, 5 meter cable |
| JC1HDP-K | PNP (Source), Radial Sensing, Quick Connect |
| JC1HDN-5 | NPN (Sink), Radial Sensing, 5 meter cable   |
| JC1HDN-K | NPN (Sink), Radial Sensing, Quick Connect   |

**NOTE:** Switches must be ordered separately.

### CORDSETS FOR SERIES JC1xDx SWITCHES

| 00.15       | OLIO I OII OLIIILO OO IADA O IIII OIILO              |
|-------------|------------------------------------------------------|
| PART NO.    | DESCRIPTION                                          |
| 63549-02    | M8, 3 pin, Straight Female Connector, 2 meter cable  |
| 63549-05    | M8, 3 pin, Straight Female Connector, 5 meter cable  |
| 81284-1-010 | M12, 4 pin, Straight Female Connector, 2 meter cable |

**NOTE:** Cordsets are ordered separately.

### SERIES JC1ST TWO POSITION TEACHABLE MACNETIC CWITCHES

| WAGNETIC SWITCHES |                                                     |  |  |  |  |  |  |  |  |
|-------------------|-----------------------------------------------------|--|--|--|--|--|--|--|--|
| PART NO.          | DESCRIPTION                                         |  |  |  |  |  |  |  |  |
| JC1STP-2          | PNP (Source), Solid State, 12-30 VDC, 2 meter cable |  |  |  |  |  |  |  |  |
| JC1STP-K          | PNP (Source) Solid State 12-30 VDC Quick Connect    |  |  |  |  |  |  |  |  |

NOTE: Switches must be ordered separately

#### CUBUSET EUD GEDIEG IC1GT GWITCHEG

| CONDOCT FOR OURILO JUIOT OWITCHES |                                                     |  |  |  |  |  |  |
|-----------------------------------|-----------------------------------------------------|--|--|--|--|--|--|
| PART NO.                          | DESCRIPTION                                         |  |  |  |  |  |  |
| 81284-1-001                       | M8, 4 pin, Straight Female Connector, 5 meter cable |  |  |  |  |  |  |

**NOTE:** Cordsets are ordered separately.

### SWITCH MOUNTING BRACKET

| PART NO. | DESCRIPTION                         |  |  |  |  |  |  |  |  |
|----------|-------------------------------------|--|--|--|--|--|--|--|--|
| 92100    | Mounts Series JC1 Switch to Tie Rod |  |  |  |  |  |  |  |  |

**NOTE:** Brackets are ordered separately.



| SPECIFICATIONS                | SERIES AV                      | SERIES HV                      | SERIES A                       |  |
|-------------------------------|--------------------------------|--------------------------------|--------------------------------|--|
| OPERATING PRESSURE            |                                |                                |                                |  |
| STANDARD CYLINDER (NO RODLOK) | 20 to 150 psi air              | 40 to 1500 psi hyd*            | 20 to 150 psi air              |  |
| CYLINDER WITH RODLOK          | 30 to 150 psi air              | _                              | 30 to 150 psi air              |  |
| OPERATING TEMPERATURE         | -20° to +180°F [-29° to +82°C] | -20° to +180°F [-29° to +82°C] | -20° to +180°F [-29° to +82°C] |  |
| STROKE TOLERANCE              | ±0.032                         | ±0.032                         | ±0.032                         |  |
| LUBRICATION                   | Permanently lubricated         | _                              | Permanently lubricated         |  |
| MAINTENANCE                   | Field repairable               | Field repairable               | Field repairable               |  |

<sup>\*</sup>Hydraulic rating is based on non-shock hydraulic service.

### **CYLINDER FORCE TABLE**

| SERIES   | CYLINDER<br>BORE | ROD<br>DIAMETER | ROD<br>DIRECTION | EFFECTIVE<br>AREA FORCE<br>Ib/psi | AIR CONSUMPTION at<br>80 psi<br>CUBIC ft/in OF STROKE | DISPLACEMENT<br>gal/in<br>OF STROKE |
|----------|------------------|-----------------|------------------|-----------------------------------|-------------------------------------------------------|-------------------------------------|
|          |                  | 1/4             | EXTEND           | 0.442                             | 0.0016                                                | 0.0019                              |
|          | 3/4              | 1/4             | RETRACT          | 0.393                             | 0.0014                                                | 0.0017                              |
|          | 3/4              | 5/16            | EXTEND           | 0.442                             | 0.0016                                                | 0.0019                              |
|          |                  | 3/10            | RETRACT          | 0.365                             | 0.0013                                                | 0.0016                              |
| A) /     | 1                | 5/16            | EXTEND           | 0.785                             | 0.0029                                                | 0.0034                              |
| AV<br>HV |                  | 3/10            | RETRACT          | 0.709                             | 0.0026                                                | 0.0031                              |
| A        |                  | 3/8             | EXTEND           | 0.785                             | 0.0029                                                | 0.0034                              |
| А        |                  | 3/0             | RETRACT          | 0.676                             | 0.0025                                                | 0.0029                              |
|          |                  | 3/8             | EXTEND           | 0.994                             | 0.0037                                                | 0.0043                              |
|          | 1-1/8            | 3/0             | RETRACT          | 0.883                             | 0.0032                                                | 0.0038                              |
|          | 1-1/0            | 1/2             | EXTEND           | 0.994                             | 0.0037                                                | 0.0043                              |
|          |                  | 1/2             | RETRACT          | 0.799                             | 0.0029                                                | 0.0034                              |

**NOTE:** Use the RETRACT figures for calculating double rod cylinder forces in both directions.

### **MAXIMUM ALLOWABLE EXTEND STROKE**

| SERIES           | ROD      |     | CYLINDER FORCE (Ib) |     |      |      |      |      |      |  |
|------------------|----------|-----|---------------------|-----|------|------|------|------|------|--|
| SENIES           | DIAMETER | 100 | 200                 | 500 | 1000 | 1500 | 2000 | 3000 | 5000 |  |
|                  | 1/4      | 12" | 9"                  | 6"  | 4"   | 3"   | _    | _    | _    |  |
| 3/4", 1", 1-1/8" | 5/16     | 18" | 13"                 | 8"  | 6"   | 5"   | _    | _    | _    |  |
| AV, HV, A        | 3/8      | 26" | 18"                 | 12" | 9"   | 7"   | _    | _    | _    |  |
|                  | 1/2      | 46" | 32"                 | 21" | 15"  | 12"  | _    | _    | _    |  |

| SERIES        | CYLINDER | U           | NIT WEIGHTS (lb)         |
|---------------|----------|-------------|--------------------------|
| SENIES        | BORE     | ZERO STROKE | ADDER PER INCH OF STROKE |
| DI AIN        | 3/4      | 0.42        | 0.04                     |
| PLAIN<br>UNIT | 1        | 0.87        | 0.07                     |
| UNIT          | 1-1/8    | 0.95        | 0.10                     |

| CYLINDER FORCE CALC                       | ULATIONS              |
|-------------------------------------------|-----------------------|
|                                           | Imperial<br>F = P x A |
| F = Cylinder Force                        | lbs                   |
| P = Operating Pressure                    | psi                   |
| A = Effective Area<br>(Extend or Retract) | in²                   |



### **All Series**

# AV, HV, A Cylinders

### **HOW TO DETERMINE BORE AND PISTON SIZE**

- 1. Determine stroke and force required.
- 2. Calculate the force (lb) produced by using the effective area figures in cylinder force table and multiplying them times the operating pressure (psi).
- Check maximum allowable extend stroke table to verify that rod size is sufficient for force. If stroke required is greater than length listed in table, increase rod diameter or go to larger hore size

**NOTE:** Maximum allowable extend stroke table shows maximum stroke lengths for mounting styles -F, -B, -R, -T, -RF, -CF, RR, RC, RRC, MS9, MS10, MR1, MF1, MF2, MN1 fastened to rigid base.

For mounting styles -K, -P, and MP1; divide table value by 2.

For mounting styles -TR and MT1; divide table value by 1.75.

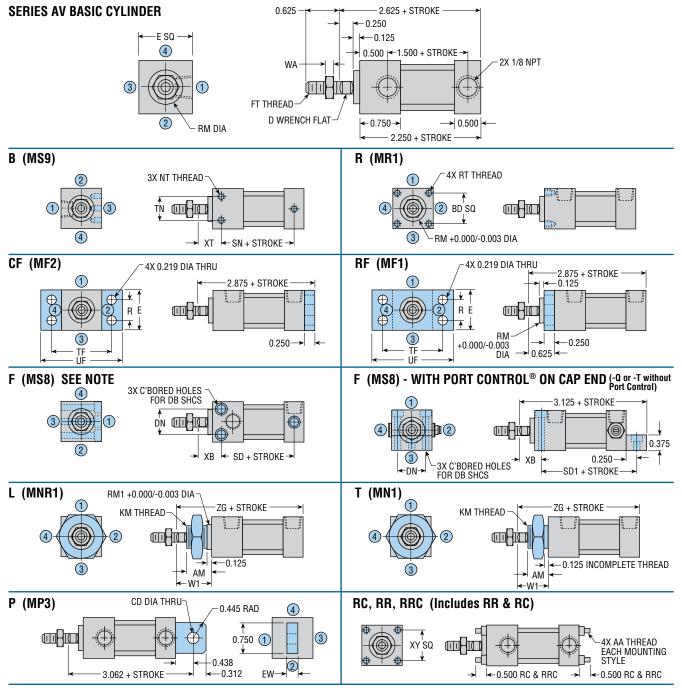
To avoid excessive wear on rod bushings and seals, it is recommended that cylinders with strokes exceeding the following lengths be equipped with 1" long stop tubes or be stopped externally 1" short of full extend stroke.

3/4" Bore x 8" 1-1/8" Bore x 12" 1" Bore x 10" 1-3/8" Bore x 18"

For -P, -K, MP1, MT1 and -TR mountings use 2/3 of above values.














### **DIMENSIONS:** Series AV Cylinders - 3/4", 1", 1-1/8" Bore



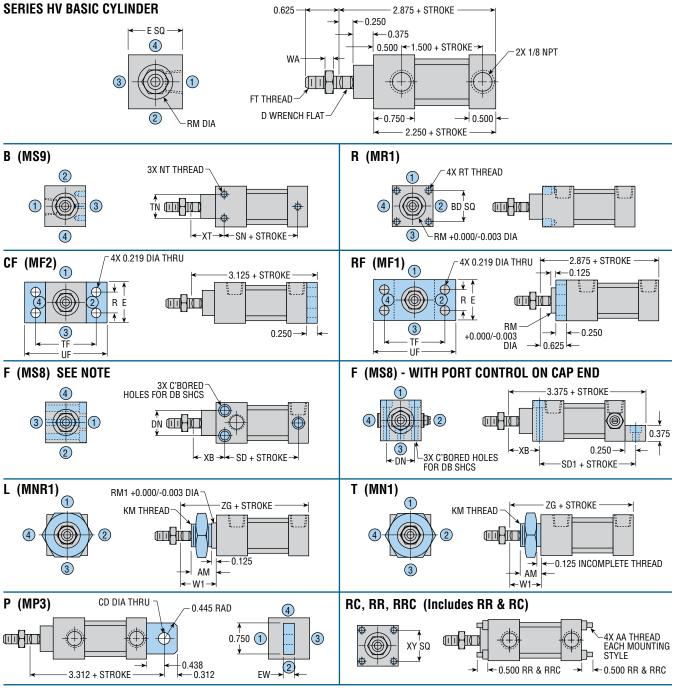
All standard rod ends have four wrench flats (two wrench flats with "I" option).

| BORE  |        |       |       |       |      |     |       |       |       | LET1    | TER DIM | ENSION          |       |       |       |                 |       |       |       |
|-------|--------|-------|-------|-------|------|-----|-------|-------|-------|---------|---------|-----------------|-------|-------|-------|-----------------|-------|-------|-------|
| SIZE  | AA     | AM    | BD    | CD    | D    | DB  | DN    | E     | EW    | FT      | KM      | NT              | R     | RM    | RM1   | RT              | SD    | SD1   | SN    |
| 3/4   | #6-32  | 0.625 | 0.750 | 0.250 | 3/16 | #8  | 0.625 | 1.000 | 0.250 | 1/4-28  | 5/8-18  | 8-32 x 0.18 DP  | 0.500 | 0.625 | 0.687 | 8-32 x 0.25 DP  | 1.812 | 2.312 | 1.812 |
| 1     | #8-32  | 0.625 | 1.000 | 0.375 | 1/4  | #10 | 0.875 | 1.375 | 0.375 | 5/16-24 | 3/4-16  | 10-32 x 0.25 DP | 0.875 | 0.750 | 0.812 | 8-32 x 0.25 DP  | 1.750 | 2.250 | 1.750 |
| 1-1/8 | #10-32 | 0.875 | 1.125 | 0.375 | 5/16 | #10 | 1.000 | 1.500 | 0.375 | 3/8-24  | 1-14    | 10-32 x 0.25 DP | 1.000 | 0.750 | 1.062 | 10-32 x 0.25 DP | 1.750 | 2.250 | 1.750 |

| l | BORE  |       |       |       | LETTE | R DIME | NSION |       |       |       |
|---|-------|-------|-------|-------|-------|--------|-------|-------|-------|-------|
|   | SIZE  | TF    | TN    | UF    | WA    | W1     | XB    | XT    | ZG    | XY    |
|   | 3/4   | 1.500 | 0.625 | 2.000 | 0.156 | 0.875  | 0.562 | 0.562 | 3.125 | 0.750 |
|   | 1     | 1.875 | 0.875 | 2.375 | 0.188 | 0.875  | 0.625 | 0.625 | 3.125 | 1.030 |
|   | 1-1/8 | 2.000 | 1.000 | 2.500 | 0.219 | 1.125  | 0.625 | 0.625 | 3.375 | 1.125 |

PORT POSITIONS: INDICATED BY CIRCLED NUMBERS
CUSHIONS: ADD 0.500 in TO ALL (+ STROKE) DIMENSIONS FOR EACH CUSHION
SHOCK PADS: ADD 0.250 in TO ALL (+ STROKE) DIMENSIONS FOR EACH SHOCK PAD

SPRING RETURN: ADD AN ADDITIONAL STROKE LENGTH TO (+ STROKE)


DIMENSIONS (2 x STROKE)

F (MS8) MTG: 3/4" BORE UNITS ORDERED WITH AN OVERSIZE PISTON ROD WILL HAVE MTG.
TABS ON THE HEAD END. CONSULT PHD FOR DIMENSIONAL INFORMATION.
OVERSIZE RODS: SEE PAGE 88 FOR OVERSIZE ROD SPECIFICATIONS.

All dimensions are reference only unless specifically toleranced.



### **DIMENSIONS:** Series HV Cylinders - 3/4", 1", 1-1/8" Bore



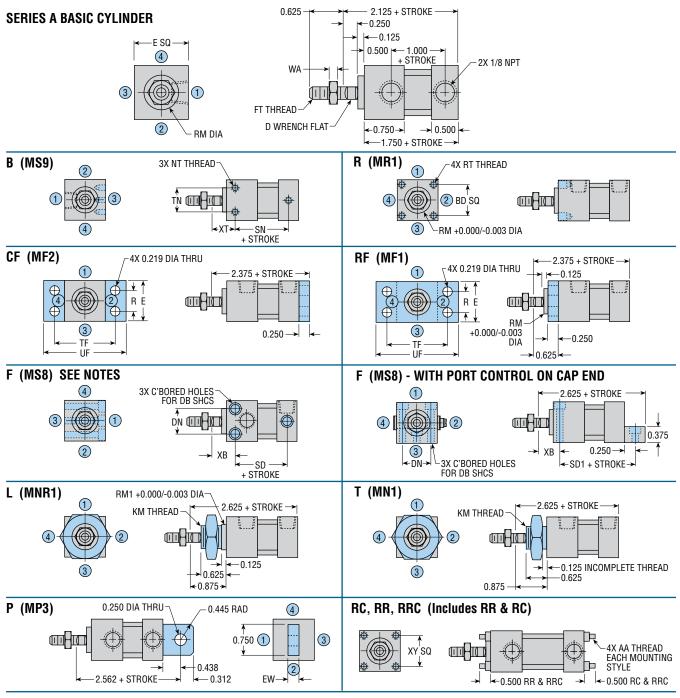
All standard rod ends have four wrench flats (two wrench flats with "I" option).

| BORE  |        |       |       |       |      |     |       |       |       | LET     | TER DIM | ENSION          |       |       |       |                 |       |       |       |
|-------|--------|-------|-------|-------|------|-----|-------|-------|-------|---------|---------|-----------------|-------|-------|-------|-----------------|-------|-------|-------|
| SIZE  | AA     | AM    | BD    | CD    | D    | DB  | DN    | E     | EW    | FT      | KM      | NT              | R     | RM    | RM1   | RT              | SD    | SD1   | SN    |
| 3/4   | #6-32  | 0.625 | 0.750 | 0.250 | 3/16 | #8  | 0.625 | 1.000 | 0.250 | 1/4-28  | 5/8-18  | 8-32 x 0.18 DP  | 0.500 | 0.625 | 0.687 | 8-32 x 0.25 DP  | 1.812 | 2.312 | 1.812 |
| 1     | #8-32  | 0.625 | 1.000 | 0.375 | 1/4  | #10 | 0.875 | 1.375 | 0.375 | 5/16-24 | 3/4-16  | 10-32 x 0.25 DP | 0.875 | 0.750 | 0.812 | 8-32 x 0.25 DP  | 1.750 | 2.250 | 1.750 |
| 1-1/8 | #10-32 | 0.875 | 1.125 | 0.375 | 5/16 | #10 | 1.000 | 1.500 | 0.375 | 3/8-24  | 1-14    | 10-32 x 0.25 DP | 1.000 | 0.750 | 1.062 | 10-32 x 0.25 DP | 1.750 | 2.250 | 1.750 |

| BORE  |       |       |       | LETTE | R DIME | NSION |       |       |       |
|-------|-------|-------|-------|-------|--------|-------|-------|-------|-------|
| SIZE  | TF    | TN    | UF    | WA    | W1     | XB    | XT    | ZG    | XY    |
| 3/4   | 1.500 | 0.625 | 2.000 | 0.156 | 0.875  | 0.812 | 0.812 | 3.125 | 0.750 |
| 1     | 1.875 | 0.875 | 2.375 | 0.188 | 0.875  | 0.875 | 0.875 | 3.125 | 1.030 |
| 1-1/8 | 2.000 | 1.000 | 2.500 | 0.219 | 1.125  | 0.875 | 0.875 | 3.375 | 1.125 |

PORT POSITIONS: INDICATED BY CIRCLED NUMBERS
CUSHIONS: ADD 0.500 in TO ALL (+ STROKE) DIMENSIONS FOR EACH CUSHION
SPRING RETURN: ADD AN ADDITIONAL STROKE LENGTH TO (+ STROKE)

DIMENSIONS (2 x STROKE)


F (MS8) MTG: 3/4" BORE UNITS ORDERED WITH AN OVERSIZE PISTON ROD WILL HAVE MTG.
TABS ON THE HEAD END. CONSULT PHD FOR DIMENSIONAL INFORMATION.

OVERSIZE RODS: SEE PAGE 88 FOR OVERSIZE ROD SPECIFICATIONS.

All dimensions are reference only unless specifically toleranced.

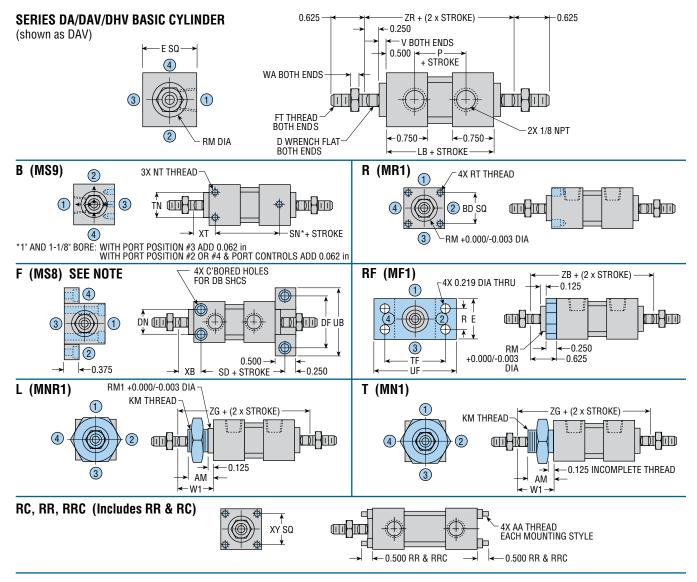


### **DIMENSIONS:** Series A Cylinders - 3/4", 1", 1-1/8" Bore



All standard rod ends have four wrench flats (two wrench flats with "I" option).

| BORE  |        |       |      |     |       |       |       |         |        | LETTER DIME     | NSION |       |       |                 |       |       |       |       |       |
|-------|--------|-------|------|-----|-------|-------|-------|---------|--------|-----------------|-------|-------|-------|-----------------|-------|-------|-------|-------|-------|
| SIZE  | AA     | BD    | D    | DB  | DN    | E     | EW    | FT      | KM     | NT              | R     | RM    | RM1   | RT              | SD    | SD1   | SN    | TF    | TN    |
| 3/4   | #6-32  | 0.750 | 3/16 | #8  | 0.625 | 1.000 | 0.250 | 1/4-28  | 5/8-18 | 8-32 x 0.18 DP  | 0.500 | 0.625 | 0.687 | 8-32 x 0.25 DP  | 1.312 | 1.812 | 1.312 | 1.500 | 0.625 |
| 1     | #8-32  | 1.000 | 1/4  | #10 | 0.875 | 1.375 | 0.375 | 5/16-24 | 3/4-16 | 10-32 x 0.25 DP | 0.875 | 0.750 | 0.812 | 8-32 x 0.25 DP  | 1.250 | 1.750 | 1.250 | 1.875 | 0.875 |
| 1-1/8 | #10-32 | 1 125 | 5/16 | #10 | 1 000 | 1 500 | 0.375 | 3/8-24  | 3/4-16 | 10-32 x 0 25 DP | 1 000 | 0.750 | 0.812 | 10-32 x 0 25 DP | 1 250 | 1 750 | 1 250 | 2 000 | 1 000 |


| BORE  |       | LETTE | R DIME | NSION |       |
|-------|-------|-------|--------|-------|-------|
| SIZE  | UF    | WA    | XB     | XT    | XY    |
| 3/4   | 2.000 | 0.156 | 0.562  | 0.562 | 0.750 |
| 1     | 2.375 | 0.188 | 0.625  | 0.625 | 1.030 |
| 1-1/8 | 2.500 | 0.219 | 0.625  | 0.625 | 1.125 |

PORT POSITIONS: INDICATED BY CIRCLED NUMBERS
CUSHIONS: ADD 0.500 in TO ALL (+ STROKE) DIMENSIONS FOR EACH CUSHION
SHOCK PADS: ADD 0.250 in TO ALL (+ STROKE) DIMENSIONS FOR EACH SHOCK PAD
SPRING RETURN: ADD AN ADDITIONAL STROKE LENGTH TO (+ STROKE) DIMENSIONS (2 x STROKE)
F (MS8) MTG: 3/4" BORE UNITS ORDERED WITH AN OVERSIZE PISTON ROD WILL HAVE MTG. TABS
ON THE HEAD END. CONSULT PHD FOR DIMENSIONAL INFORMATION.
OVERSIZE RODS: SEE PAGE 88 FOR OVERSIZE ROD SPECIFICATIONS.

All dimensions are reference only unless specifically toleranced.



### **DIMENSIONS:** DAV, DHV, DA Double Rod Cylinders - 3/4", 1", 1-1/8" Bore



All standard rod ends have four wrench flats (two wrench flats with "I" option).

### **DIMENSIONS COMMON TO ALL SERIES**

| BORE  |        |       |      |     |       |       |       |         | LETTER D        | IMENSIC | ON    |                 |       |       |       |       |       |       |
|-------|--------|-------|------|-----|-------|-------|-------|---------|-----------------|---------|-------|-----------------|-------|-------|-------|-------|-------|-------|
| SIZE  | AA     | BD    | D    | DB  | DF    | DN    | E     | FT      | NT              | R       | RM    | RT              | TF    | TN    | UB    | UF    | WA    | XY    |
| 3/4   | #6-32  | 0.750 | 3/16 | #8  | 1.375 | 0.625 | 1.000 | 1/4-28  | 8-32 x 0.18 DP  | 0.500   | 0.625 | 8-32 x 0.25 DP  | 1.500 | 0.625 | 1.750 | 2.000 | 0.156 | 0.750 |
| 1     | #8-32  | 1.000 | 1/4  | #10 | 1.750 | 0.875 | 1.375 | 5/16-24 | 10-32 x 0.25 DP | 0.875   | 0.750 | 8-32 x 0.25 DP  | 1.875 | 0.875 | 2.125 | 2.375 | 0.188 | 1.030 |
| 1-1/8 | #10-32 | 1.125 | 5/16 | #10 | 1.875 | 1.000 | 1.500 | 3/8-24  | 10-32 x 0.25 DP | 1.000   | 0.750 | 10-32 x 0.25 DP | 2.000 | 1.000 | 2.250 | 2.500 | 0.219 | 1.125 |

### **SERIES DA CYLINDERS**

| BORE  |       |        |       |       |       | LET   | TER DI | MENS  | ON    |       |       |       |       |       |
|-------|-------|--------|-------|-------|-------|-------|--------|-------|-------|-------|-------|-------|-------|-------|
| SIZE  | AM    | KM     | LB    | Р     | RM1   | SD    | SN     | V     | W1    | XB    | XT    | ZB    | ZG    | ZR    |
| 3/4   | 0.625 | 5/8-18 | 2.000 | 1.000 | 0.687 | 2.063 | 1.562  | 0.125 | 0.875 | 0.562 | 0.562 | 3.000 | 3.250 | 2.750 |
| 1     | 0.625 | 3/4-16 | 2.000 | 1.000 | 0.812 | 2.000 | 1.500  | 0.125 | 0.875 | 0.625 | 0.625 | 3.000 | 3.250 | 2.750 |
| 1-1/8 | 0.625 | 3/4-16 | 2.000 | 1.000 | 0.812 | 2.000 | 1.500  | 0.125 | 0.875 | 0.625 | 0.625 | 3.000 | 3.250 | 2.750 |

### **SERIES DHV CYLINDERS**

| BORE  |       |        |       |       |       | LET   | TER DI | MENS  | ON    |       |       |       |       |       |
|-------|-------|--------|-------|-------|-------|-------|--------|-------|-------|-------|-------|-------|-------|-------|
| SIZE  | AM    | KM     | LB    | P     | RM1   | SD    | SN     | V     | W1    | XB    | XT    | ZB    | ZG    | ZR    |
| 3/4   | 0.625 | 5/8-18 | 2.500 | 1.500 | 0.687 | 2.562 | 2.062  | 0.375 | 0.875 | 0.812 | 0.812 | 3.750 | 4.000 | 3.750 |
| 1     | 0.625 | 3/4-16 | 2.500 | 1.500 | 0.812 | 2.500 | 2.000  | 0.375 | 0.875 | 0.875 | 0.875 | 3.750 | 4.000 | 3.750 |
| 1-1/8 | 0.875 | 1-14   | 2.500 | 1.500 | 1.062 | 2.500 | 2.000  | 0.375 | 1.125 | 0.875 | 0.875 | 3.750 | 4.250 | 3.750 |

### **SERIES DAV CYLINDERS**

|   | BORE  |       |        |       |       |       | LET   | TER DI | MENS  | ON    |       |       |       |       |       |
|---|-------|-------|--------|-------|-------|-------|-------|--------|-------|-------|-------|-------|-------|-------|-------|
|   | SIZE  | AM    | KM     | LB    | P     | RM1   | SD    | SN     | V     | W1    | XB    | XT    | ZB    | ZG    | ZR    |
| ı | 3/4   | 0.625 | 5/8-18 | 2.500 | 1.500 | 0.687 | 2.562 | 2.062  | 0.125 | 0.875 | 0.562 | 0.562 | 3.500 | 3.750 | 3.250 |
| ı | 1     | 0.625 | 3/4-16 | 2.500 | 1.500 | 0.812 | 2.500 | 2.000  | 0.125 | 0.875 | 0.625 | 0.625 | 3.500 | 3.750 | 3.250 |
| ı | 1-1/8 | 0.875 | 1-14   | 2.500 | 1.500 | 1.062 | 2.500 | 2.000  | 0.125 | 1.125 | 0.625 | 0.625 | 3.500 | 4.000 | 3.250 |

PORT POSITIONS: INDICATED BY CIRCLED NUMBERS

CUSHIONS: ADD 0.500 in TO ALL (+ STROKE) DIMENSIONS FOR EACH CUSHION SHOCK PADS: ADD 0.250 in TO ALL (+ STROKE) DIMENSIONS FOR EACH SHOCK PAD SPRING RETURN: ADD AN ADDITIONAL STROKE LENGTH TO ALL (+ STROKE)

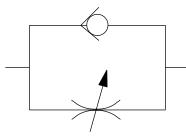
DIMENSIONS (2 x STROKE)

F (MS8) MTG: 3/4" BORE UNITS ORDERED WITH AN OVERSIZE PISTON ROD WILL HAVE MTG. TABS ON THE HEAD END. CONSULT PHD FOR DIMENSIONAL INFORMATION.

OVERSIZE RODS: SEE PAGE 88 FOR OVERSIZE ROD SPECIFICATIONS.






PC

PR

### PORT CONTROL®

The exclusive PHD Port Control®, based on the "meter-out" principle, features an adjustable needle and a separate ball check. Both are built into the cylinder end cap and are used to control the speed of the cylinder over its entire stroke.

The self-locking needle has micrometer threads and is adjustable under pressure. It determines the orifice size which controls the exhaust volume. The separate ball check is closed while fluid is exhausting from the cylinder, but opens to permit full flow of



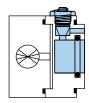
incoming fluids. The PHD Port Control® provides the optimum in speed control for small bore cylinders. It saves space and eliminates the cost of installation and fittings for external flow control valves.



DC

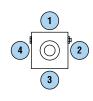
DR

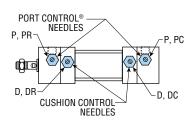
### ADJUSTABLE CUSHION


PHD Cushions are designed for smooth deceleration at the end of stroke. When the cushion is activated the remaining volume in the cylinder must exhaust past an adjustable needle which controls the amount of deceleration.

See dimension pages for dimensional information.

Effective cushion length 1/2"

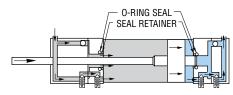

Not warranted on Series HV units


### **CUSHION BLOCK**



# STANDARD PORT CONTROL® AND CUSHION NEEDLE POSITIONS

Port Control® and cushion needles are located in position 2 on standard cylinders. They may be located at position 4 when specified on all Series A, AV, and HV.






# PORT CONTROL® AND ADJUSTABLE CUSHION COMBINATION

Cushion and Port Control® combination arranged in series provides a compact efficient control system for maximum space weight and cost savings. The cushion is activated when the piston extension enters a seal in the cushion block. The remaining volume in the cylinder exhausts past an adjustable needle. A check seal in the adjusting needle is closed during deceleration, but opens to permit full flow for immediate reversing. The cushion seal in the block is an O-ring for air units.

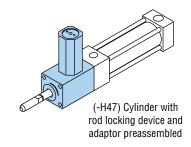
#### **CUSHION BLOCK STYLE**



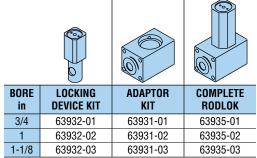




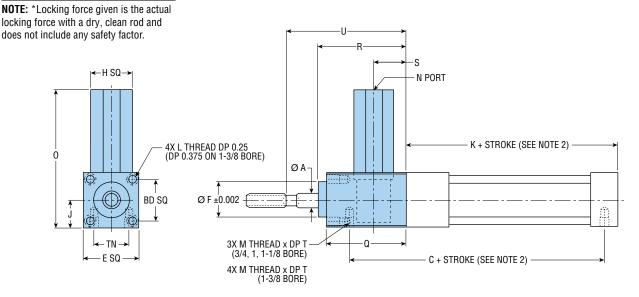
### RODLOK CYLINDER & RODLOK Available on single rod Series A and AV units only. (Preassembled) •


PHD's Rodlok is ideal for locking the piston rod while in a static/ stationary position. When the pressure is removed from the port of the Rodlok, the mechanism will grip the rod and prevent it from moving. The loads are held indefinitely without power. Rodlok performance is application and environment sensitive (cleanliness of rod or Rodlok will also affect performance). THE RODLOK IS NOT DESIGNED TO BE USED AS A PERSONAL SAFETY DEVICE.

**Option -H47** provides a cylinder and Rodlok pre-assembled. The port for the Rodlok will be assembled in the same position as the port on the extend end of the cylinder.


Replacement Rodlok kits can be purchased separately. See chart at right. The locking device and adaptor are not available with the -Z1 corrosion resistant finish.

- -H47 available on B, R, P, and RC only.
- This option does not dimensionally comply with the NFPA standard specifications.


| BORE  | STATIC LOCKING FORCE* |     |  |  |  |  |  |  |  |
|-------|-----------------------|-----|--|--|--|--|--|--|--|
| in    | lbf                   | N   |  |  |  |  |  |  |  |
| 3/4   | 40                    | 180 |  |  |  |  |  |  |  |
| 1     | 56                    | 250 |  |  |  |  |  |  |  |
| 1-1/8 | 79                    | 350 |  |  |  |  |  |  |  |



### REPLACEMENT RODLOK KITS



Part numbers listed above are intended for replacement purposes only.



| BORE  |       | LETTER DIMENSION |        |        |        |        |        |        |        |        |        |        |        |        |       |        |        |        |
|-------|-------|------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|-------|--------|--------|--------|
| in    | Α     | C                | E      | F      | Н      | J      | K      | L      | M      | N      | 0      | Q      | R      | S      | T     | U      | BD     | TN     |
| 3/4   | 0.250 | 3.063            | 1.000  | 0.622  | 0.728  | 0.500  | 2.250  | 8-32   | 8-32   | 10-32  | 2.409  | 1.500  | 1.625  | 0.625  | 0.187 | 1.875  | 0.750  | 0.625  |
| 3/4   | [6.4] | [77.8]           | [25.4] | [15.8] | [18.5] | [12.7] | [57.2] | UNC-2B | UNC-2B | UNF-2B | [61.2] | [38.1] | [41.3] | [15.9] | [4.7] | [47.6] | [19.1] | [15.9] |
| 4     | 0.312 | 3.000            | 1.375  | 0.747  | 0.787  | 0.688  | 2.250  | 8-32   | 8-32   | 10-32  | 2.756  | 1.500  | 1.625  | 0.625  | 0.250 | 1.875  | 1.000  | 0.875  |
|       | [7.9] | [76.2]           | [34.9] | [19.0] | [20.0] | [17.5] | [57.2] | UNC-2B | UNC-2B | UNF-2B | [70.0] | [38.1] | [41.3] | [15.9] | [6.4] | [47.6] | [25.4] | [22.2] |
| 1-1/8 | 0.375 | 3.000            | 1.500  | 0.747  | 0.787  | 0.750  | 2.250  | 10-32  | 10-32  | 10-32  | 2.819  | 1.500  | 1.625  | 0.625  | 0.250 | 1.875  | 1.125  | 1.000  |
| 1-1/0 | [9.5] | [76.2]           | [38.1] | [19.0] | [20.0] | [19.1] | [57.2] | UNF-2B | UNF-2B | UNF-2B | [71.6] | [38.1] | [41.3] | [15.9] | [6.4] | [47.6] | [28.6] | [25.4] |

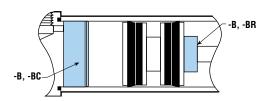
#### NOTES:

- 1) BREAKAWAY FORCE ON CYLINDERS WITH RODLOK APPROXIMATELY 30 PSI.
- 2) FOR SERIES A 3/4", 1", AND 1-1/8" BORES, SUBTRACT 0.500 (K = 1.750, C : 3/4 = 2.563, 1, 1-1/8 = 2.500)





BC


BR

### **SHOCK PADS**

Polyurethane pads for absorption of shock and noise (not available on HV hydraulic units). Reducing shock permits higher piston velocities for shorter cycle times. Reducing noise levels provides improved environment for increased productivity. Eliminates metal to metal contact between piston and end caps.

Available with all options EXCEPT:

- Same end as Cushion (-D, -DC, or -DR)
- Spring end of Spring Return cylinder (-SC or -SR)
- Same end as Stroke Adjustment (-A)

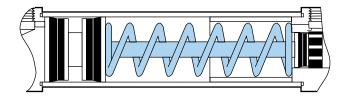




SC

# SPRING RETURN Available in 1/4" increments

All standard A, AV and HV Cylinders from 1/4" to 6" of stroke can be built with internal springs to return or extend the piston rod in single acting applications. The standard spring provides a preload and a spring rate per chart below. Other spring combinations will be quoted on request.


 STROKE
 PRELOAD
 RATE

 1/4"-3"
 4 lb
 7 lb/in

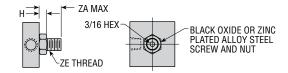
 3-1/4"-6"
 2 lb
 3-1/2 lb/in

### Available with all options EXCEPT:

- Cushion on the spring end (-D, -DC, or -DR)
- Shock pad on the spring end (-B, -BC, or -BR)
- Stroke adjustment on the spring end (-A)






### CYLINDER STROKE ADJUSTMENT

Stroke adjustment screws are available to decrease the retraction stroke of any Series AV or A cylinders. The standard adjusting range is 1/2 inch. Longer adjusting lengths are available on request.

| BORE SIZE | Н     | ZA    | ZE<br>Standard | ZE<br>WITH -P OR -PC |  |  |
|-----------|-------|-------|----------------|----------------------|--|--|
| 3/4       | 0.370 | 1.031 | 3/8-24         | 5/16-24              |  |  |
| 1         | 0.462 | 1.156 | 1/2-20         | 3/8-24               |  |  |
| 1-1/8     | 0.462 | 1.156 | 1/2-20         | 1/2-20               |  |  |

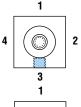
### Available with all options EXCEPT:

- Cushion on the cap end (-D or -DC)
- Shock pad on the cap end (-B or -BC)
- Spring on the cap end (-SC)
- Pivot Mount, Pivot on cap (P Mounting)
- Cap flange mount, flange on cap (CF Mounting)
- F Mounting on 3/4 bore with -P or -PC



### **PORT POSITIONS**

Port position 1 is standard on all cylinders except mounting style -F without port controls. The cap end port will be in position 4 standard.


If port position 1 (-Q) or 3 (-T) is desired, add -Q or -T to unit description and -F mounting tab will be added to unit to accommodate units.

### **STANDARD PORT POSITION 1**



T

PORT POSITION 3



R

**PORT POSITION 2** 



U

**PORT POSITION 4** 



All dimensions are reference only unless specifically toleranced.





# MAGNETIC PISTON FOR SERIES JC1 RADIAL SENSING SWITCHES

PHD Cylinders may be equipped with a magnetic band (specify -E) on the piston which activates externally mounted radial sensing switches. These switches allow the interfacing of the Tom Thumb® air or hydraulic cylinder to various logic systems. This option is for use with the following switches.

#### SERIES JC1xDx MAGNETIC SWITCHES

| PART NO. | DESCRIPTION                                 |
|----------|---------------------------------------------|
| JC1HDP-5 | PNP (Source), Radial Sensing, 5 meter cable |
| JC1HDP-K | PNP (Source), Radial Sensing, Quick Connect |
| JC1HDN-5 | NPN (Sink), Radial Sensing, 5 meter cable   |
| JC1HDN-K | NPN (Sink), Radial Sensing, Quick Connect   |

**NOTE:** Switches must be ordered separately.

#### **CORDSETS FOR SERIES JC1xDx SWITCHES**

| PART NO.    | DESCRIPTION                                          |
|-------------|------------------------------------------------------|
| 63549-02    | M8, 3 pin, Straight Female Connector, 2 meter cable  |
| 63549-05    | M8, 3 pin, Straight Female Connector, 5 meter cable  |
| 81284-1-010 | M12, 4 pin, Straight Female Connector, 2 meter cable |

**NOTE:** Cordsets are ordered separately.



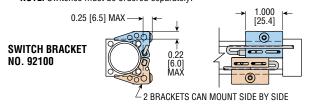
# MAGNETIC PISTON FOR SERIES JC1 REED & TEACHABLE SWITCHES

The PHD Magnetic Reed Switches may be used in situations where the radial sensing switches are not applicable. As with the radial sensing switches, a magnetic band (specify -M) on the piston activates the externally mounted PHD Reed Switches. The Reed Switches may be used to signal a programmable controller, sequencer, relay, or in some cases, a valve solenoid. This option is for use with the following switches.

The Teachable Switch provides the ability to identify two separately programmable positions with a single switch. Programmable capability means no "fine tuning." With switch properly aligned, just place actuator in desired positions and program. Solid-state sensing technology provides a highly reliable switch.

See Series JC1 Switches at phdinc.com for more information.

### **SERIES JC1ST REED SWITCHES**


| PART NO. | DESCRIPTION                       |
|----------|-----------------------------------|
| JC1RDU-5 | PNP or NPN DC Reed, 5 meter cable |
| JC1RDU-K | PNP or NPN DC Reed, Quick Connect |
| JC1ADU-K | AC Reed, Quick Connect (M12)      |

**NOTE:** Switches must be ordered separately.

### **SERIES JC1ST TEACHABLE SWITCHES**

| PART NO. | DESCRIPTION                                         |
|----------|-----------------------------------------------------|
| JC1STP-2 | PNP (Source), Solid State, 12-30 VDC, 2 meter cable |
| JC1STP-K | PNP (Source), Solid State, 12-30 VDC, Quick Connect |

NOTE: Switches must be ordered separately.



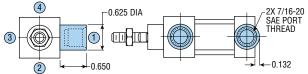


### **FLUOROELASTOMER SEALS**

Fluoroelastomer seals are available to achieve seal compatibility with certain fluids. Seal compatibility should be checked with the fluid manufacturer for proper application. Consult PHD for high temperature use.



### **ELECTROLESS NICKEL PLATING**


Electroless nickel plating is done on all externally exposed ferrous parts except rods and rod end, or parts made of stainless steel or aluminum. This optional plating treatment gives an alternative method of protecting the cylinder from severe environments.



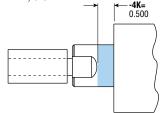
### **SAE PORTS FOR SERIES HV**

SAE Ports are available on most Tom Thumb Hydraulic Cylinders. Series HV Cylinders require a boss which is brazed to the head and cap.

Dimensions for this boss are shown below. This option is not available on cylinders with an "F" mounting style. Consult PHD for optional port position or **units with Port Controls**®. Oversize rods are available except on T and L mounting styles on 3/4" bore cylinders.






### **EXTRA ROD EXTENSION**

This option may be specified when extra plain rod extension between rod flats and cylinder snout is desired. Length is specified in 1/8" increments.

Length code example:

-4K = 1/2" of extra rod extension

-8K = 1", etc.



**NOTE:** On double rod end cylinders with -\_K specified will be applied to one end of cylinder only (head end/primary mounting end).

# W

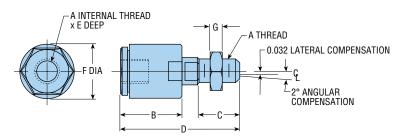
### **CLOSE TOLERANCE STROKE**

This option may be specified when a precise stroke length is required and stroke adjustment is not acceptable. By specifying this option, a stroke length with a tolerance of  $\pm 0.005$  will be supplied. Standard stroke tolerance is  $\pm 0.032$ .

Maximum stroke for cylinders with close tolerance is 18".

**NOTE:** This option is not available with shock pads (-B, -BC, or -BR).

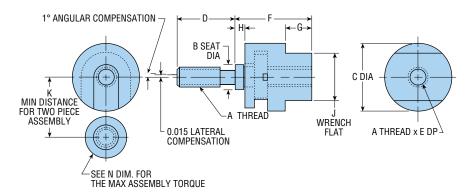



### **SELF-ALIGNING PISTON ROD COUPLERS**

Rod Couplers eliminate expensive precision machining for mounting fixed or rigid cylinder on guide or slide applications.

Cylinder efficiency is increased by eliminating friction caused by misalignment. Couplers compensate for 2° angular error and 1/32" lateral misalignment on push and pull stroke.

| MODESL |         |               | SION  |             |       |       |       |  |
|--------|---------|---------------|-------|-------------|-------|-------|-------|--|
| NO.    | A       | В             | C     | D           | E     | F     | G     |  |
| 250    | 1/4-28  | 1.000         | 0.625 | 1.875       | 0.500 | 0.875 | 0.156 |  |
| 312    | 5/16-24 | 4 1.000 0.625 |       | 1.875 0.500 |       | 0.875 | 0.187 |  |
| 375    | 3/8-24  | 1.000         | 0.625 | 1.875       | 0.500 | 0.875 | 0.219 |  |
| 437    | 7/16-20 | 1.125         | 0.650 | 2.187       | 0.500 | 1.000 | 0.250 |  |
| 500    | 1/2-20  | 1.125         | 0.650 | 2.187       | 0.500 | 1.000 | 0.312 |  |
| 625    | 5/8-18  | 1.750         | 1.125 | 3.312       | 0.812 | 1.562 | 0.375 |  |
| 750    | 3/4-16  | 1.750         | 1.125 | 3.312       | 0.812 | 1.562 | 0.421 |  |


TO ORDER, SPECIFY THE MODEL NUMBER.

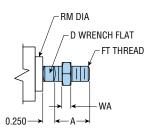


### **MINIATURE COUPLERS**

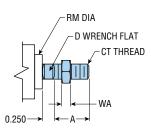
Couplers provide greater reliability and reduce cylinder and component wear, simplifying alignment problems in the field.

Rod Couplers are manufactured from high tensile and hardened steel components.

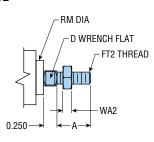



| MODEL LETTER DIMENSION |       |       |       |       |       |       |       |       |      |       |           |
|------------------------|-------|-------|-------|-------|-------|-------|-------|-------|------|-------|-----------|
| NO.                    | Α     | В     | C     | D     | E     | F     | G     | Н     | J    | K     | N         |
| 19300-01               | 5-40  | 0.160 | 0.440 | 0.375 | 0.250 | 0.500 | 0.170 | 0.066 | 5/16 | 0.390 | 20 in-lbs |
| 19300-02               | 10-32 | 0.250 | 0.560 | 0.500 | 0.281 | 0.558 | 0.200 | 0.058 | 3/8  | 0.490 | 70 in-lbs |

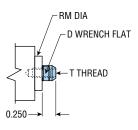
All dimensions are reference only unless specifically toleranced.



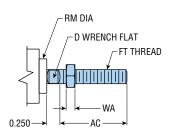

## ACCESSORIES: Series AV, HV, A Cylinders - 3/4", 1", 1-1/8" Bore


### STANDARD (#1 ROD END)

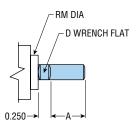



### L COARSE THREAD ROD END




### G ROD END STYLE #2




### ROD END STYLE #4



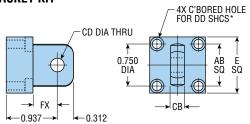
### ROD END STYLE #2X



### N PLAIN ROD END



All standard rod ends have four wrench flats (two wrench flats with "I" option).

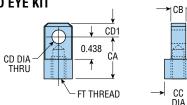

| BORE  | ROD TYPE | ROD<br>DIAMETER |       | LETTER DIMENSION |         |      |         |         |                        |                   |       |       |  |  |
|-------|----------|-----------------|-------|------------------|---------|------|---------|---------|------------------------|-------------------|-------|-------|--|--|
| SIZE  | HOD THE  |                 | A     | AC               | CT      | D    | FT      | FT2     | RM                     | T                 | WA    | WA2   |  |  |
| 3/4   | STANDARD | 0.250           | 0.625 | 1.250            | 1/4-20  | 7/32 | 1/4-28  | 10-32   | 0.625                  | 6-32 x 0.437 DP   | 0.156 | 0.130 |  |  |
| 3/4   | OVERSIZE | 0.312           | 0.625 | 1.250            | 5/16-18 | 1/4  | 5/16-24 | 1/4-28  | 0.625                  | 10-32 x 0.625 DP  | 0.187 | 0.156 |  |  |
| 4     | STANDARD | 0.312           | 0.625 | 1.250            | 5/16-18 | 1/4  | 5/16-24 | 1/4-28  | 0.750                  | 10-32 x 0.625 DP  | 0.187 | 0.156 |  |  |
|       | OVERSIZE | 0.375           | 0.625 | 1.250            | 3/8-16  | 5/16 | 3/8-24  | 5/16-24 | 0.750                  | 1/4-28 x 0.625 DP | 0.219 | 0.187 |  |  |
| 1-1/8 | STANDARD | 0.375           | 0.625 | 1.250            | 3/8-16  | 5/16 | 3/8-24  | 5/16-24 | 0.750                  | 1/4-28 x 0.625 DP | 0.219 | 0.187 |  |  |
| 1-1/0 | OVERSIZE | 0.500           | 0.750 | 1.500            | 1/2-13  | 7/16 | 1/2-20  | 7/16-20 | A: 0.750, AV-HV: 1.000 | 3/8-24 x 0.625 DP | 0.312 | 0.250 |  |  |

**NOTE:** On double rod cylinders, both rod ends will be the same on both ends of the cylinder.

Empowering Automation

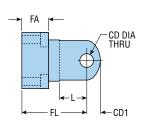
# ACCESSORIES: Series AV, HV, A Cylinders - 3/4", 1", 1-1/8" Bore

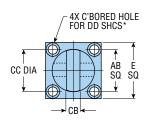
### **EYE BRACKET KIT**




|   | BORE  | CYLINDER  | PART    | LETTER DIMENSION |       |       |     |       |       |  |  |
|---|-------|-----------|---------|------------------|-------|-------|-----|-------|-------|--|--|
|   | SIZE  | SERIES    | NO.     | AB               | CB    | CD    | DD* | E     | FX    |  |  |
|   | 3/4   | A, AV, HV | 1077-01 | 0.750            | 0.248 | 0.250 | #6  | 1.000 | 0.577 |  |  |
| ĺ | 1 &   | А         | 1077-02 | 1.000            | 0.373 | 0.250 | #10 | 1.375 | 0.437 |  |  |
|   | 1-1/8 | AV, HV    | 1077-03 | 1.000            | 0.373 | 0.375 | #10 | 1.375 | 0.437 |  |  |

\*FOR 3/4 BORE THRU HOLE ONLY.


NOTE: THESE BRACKETS MOUNT TO CUSTOMER MOUNTING SURFACE AND ARE USED WITH CORRESPONDING CYLINDER ROD CLEVIS KITS

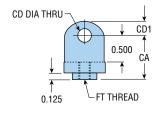


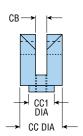



| BORE  | CYLINDER   | PART    |       | LETTER DIMENSION |       |       |       |                    |  |  |  |  |
|-------|------------|---------|-------|------------------|-------|-------|-------|--------------------|--|--|--|--|
| SIZE  | SERIES NO. |         | CA    | CB               | CC    | CD    | CD1   | FT                 |  |  |  |  |
| 3/4   | A, AV, HV  | 1075-01 | 0.750 | 0.248            | 0.500 | 0.250 | 0.250 | 1/4-28 x 0.375 DP  |  |  |  |  |
| -1    | Α          | 1075-02 | 0.875 | 0.373            | 0.750 | 0.250 | 0.375 | 5/16-24 x 0.375 DP |  |  |  |  |
| '     | AV, HV     | 1075-04 | 0.875 | 0.373            | 0.750 | 0.375 | 0.375 | 5/16-24 x 0.375 DP |  |  |  |  |
| 1-1/8 | А          | 1075-03 | 0.875 | 0.373            | 0.750 | 0.250 | 0.375 | 3/8-24 x 0.312 DP  |  |  |  |  |
| 1-1/0 | AV, HV     | 1075-05 | 0.875 | 0.373            | 0.750 | 0.375 | 0.375 | 3/8-24 x 0.312 DP  |  |  |  |  |

### **CLEVIS BRACKET KIT - PIN INCLUDED**







| BORE  | CYLINDER  | PART  |       | LETTER DIMENSION |       |       |       |     |       |       |       |       |
|-------|-----------|-------|-------|------------------|-------|-------|-------|-----|-------|-------|-------|-------|
| SIZE  | SERIES    | NO.   | AB    | CB               | CC    | CD    | CD1   | DD* | E     | FA    | FL    | L     |
| 3/4   | A, AV, HV | 12901 | 0.750 | 0.254            | 0.750 | 0.250 | 0.250 | #6  | 1.000 | 0.360 | 1.187 | 0.500 |
| 1 &   | А         | 12902 | 1.000 | 0.379            | 0.875 | 0.250 | 0.375 | #10 | 1.375 | 0.500 | 1.250 | 0.531 |
| 1-1/8 | AV, HV    | 12903 | 1.000 | 0.379            | 0.875 | 0.375 | 0.375 | #10 | 1.375 | 0.500 | 1.250 | 0.531 |

\*FOR 3/4 BORE THRU HOLE ONLY.

**NOTE:** THESE BRACKETS MOUNT TO CUSTOMER MOUNTING SURFACE AND ARE USED WITH CORRESPONDING CYLINDER PIVOT MOUNTING (P MOUNTING)

### **ROD CLEVIS KIT - PIN INCLUDED**





| BORE  | CYLINDER  | PART  |       | LETTER DIMENSION |       |       |       |       |                 |
|-------|-----------|-------|-------|------------------|-------|-------|-------|-------|-----------------|
| SIZE  | SERIES    | NO.   | CA    | CB               | CC    | CC1   | CD    | CD1   | FT              |
| 3/4   | A, AV, HV | 12904 | 0.812 | 0.254            | 0.750 | 0.437 | 0.250 | 0.250 | 1/4-28 TO SLOT  |
| 4     | Α         | 12905 | 0.875 | 0.379            | 0.875 | 0.562 | 0.250 | 0.375 | 5/16-24 TO SLOT |
|       | AV, HV    | 12906 | 0.875 | 0.379            | 0.875 | 0.562 | 0.375 | 0.375 | 5/16-24 TO SLOT |
| 1-1/8 | А         | 12907 | 0.875 | 0.379            | 0.875 | 0.562 | 0.250 | 0.375 | 3/8-24 TO SLOT  |
| 1-1/0 | AV, HV    | 12908 | 0.875 | 0.379            | 0.875 | 0.562 | 0.375 | 0.375 | 3/8-24 TO SLOT  |

All dimensions are reference only unless specifically toleranced.



# **AV & A Cleanroom**

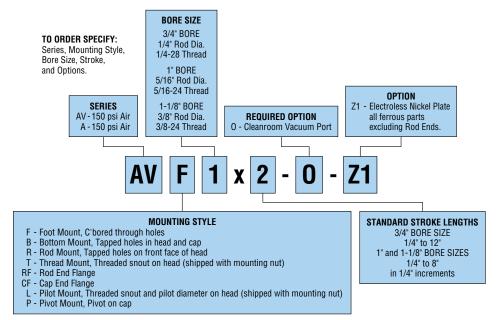
# tom thumb®

3/4", 1", 1-1/8" Bore


### **Major Benefits**

- This option allows PHD Tom Thumb® Cylinders to be used in Class 100 cleanroom applications
- Vacuum port and special bushing minimize particles from rod gland area
- · Wide range of mounting styles for easy installation



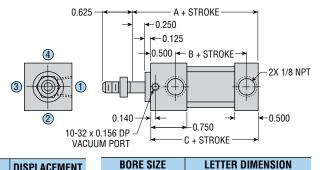

(Requires Option -0)

#10-32 vacuum port for particulate removal (fittings not provided)





### ORDERING DATA: Cleanroom Cylinders - 3/4", 1", 1-1/8" Bore




#### NOTES:

- Some cleanroom applications may require -Z1 electroless nickel plating of all ferrous parts.
- Consult PHD for any special lubrication requirements.
- 3) PHD Tom Thumb®
  Cylinders with vacuum
  ports have been tested
  and comply with
  class 100 cleanroom
  requirements for
  particle count and size.

### **ENGINEERING DATA & DIMENSIONS:** Cleanroom Cylinders

| SPECIFICATIONS        | SERIES AV              | SERIES A               |
|-----------------------|------------------------|------------------------|
| OPERATING PRESSURE    |                        |                        |
| STANDARD CYLINDER     | 20 to 150 psi air      | 20 to 150 psi air      |
| OPERATING TEMPERATURE | -20° to 180°F          | -20° to 180°F          |
| OFENATING TEMPENATURE | [-29° to 82°C]         | [-29° to 82°C]         |
| STROKE TOLERANCE      | ±0.032                 | ±0.032                 |
| LUBRICATION           | Permanently lubricated | Permanently lubricated |
| MAINTENANCE           | Field repairable       | Field repairable       |



3/4", 1", 1-1/8"

### CYLINDER FORCE TABLE

| SERIES | CYLINDER<br>BORE | ROD<br>Diameter | ROD<br>DIRECTION | EFFECTIVE<br>AREA FORCE<br>Ib/psi | AIR CONSUMPTION<br>at 80 psi<br>CUBIC ft/in OF STROKE | DISPLACEMENT<br>gal./in<br>OF STROKE |
|--------|------------------|-----------------|------------------|-----------------------------------|-------------------------------------------------------|--------------------------------------|
|        | 3/4              | 1/4             | EXTEND           | 0.442                             | 0.0016                                                | 0.0019                               |
|        | 3/4              | 1/4             | RETRACT          | 0.393                             | 0.0014                                                | 0.0017                               |
| ۸۱/ ۸  | 1                | 5/16            | EXTEND           | 0.785                             | 0.0029                                                | 0.0034                               |
| AV, A  | '                | 3/10            | RETRACT          | 0.709                             | 0.0026                                                | 0.0031                               |
|        | 1-1/8            | 3/8             | EXTEND           | 0.994                             | 0.0037                                                | 0.0043                               |
|        |                  |                 | RETRACT          | 0.883                             | 0.0032                                                | 0.0038                               |

| -, - , - ,, -                               |       |       |       |  |  |  |
|---------------------------------------------|-------|-------|-------|--|--|--|
| SERIES AV                                   | 2.625 | 1.500 | 2.250 |  |  |  |
| SERIES A                                    | 2.125 | 1.000 | 1.750 |  |  |  |
| See Series A, AV, HV section of catalog for |       |       |       |  |  |  |

See Series A, AV, HV section of catalog for complete cylinder dimensions and mounting styles.

| SERIES        | CYLINDER | U           | NIT WEIGHTS (Ib)         |
|---------------|----------|-------------|--------------------------|
| SENIES        | BORE     | ZERO STROKE | ADDER PER INCH OF STROKE |
| DI AIN        | 3/4      | 0.42        | 0.04                     |
| PLAIN<br>UNIT | 1        | 0.87        | 0.07                     |
| UNIT          | 1-1/8    | 0.95        | 0.10                     |

### **VACUUM RATING**

Vacuum Port - up to 25 In. Hg.

### **VACUUM CONNECTIONS**

Manufacturer fittings differ. Due to close proximity of vacuum port to cylinder head port, the 10-32 vacuum port may require the use of a 10-32 barb fitting depending on fitting manufacturer used.

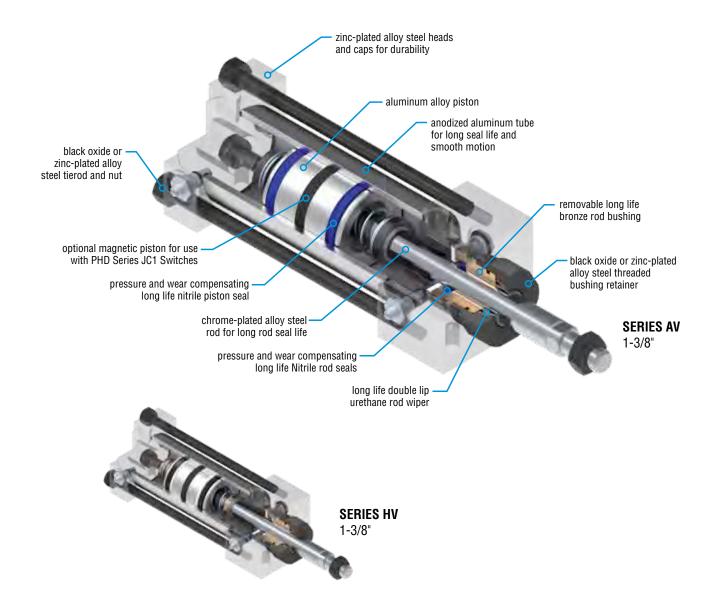
### MAX. ALLOWABLE EXTEND STROKE

| SERIES                        | ROD<br>DIAMETER | CYLINDER FORCE<br>100 lb |
|-------------------------------|-----------------|--------------------------|
| 0/4" 4" 4 4/0"                | 1/4             | 12"                      |
| 3/4", 1", 1-1/8"<br>AV. HV. A | 5/16            | 18"                      |
| Av, 11V, A                    | 3/8             | 26"                      |

| CYLINDER FORCE CALCULATIONS                                         |                       |  |  |
|---------------------------------------------------------------------|-----------------------|--|--|
|                                                                     | Imperial<br>F = P x A |  |  |
| F = Cylinder Force                                                  | lbs                   |  |  |
| P = Operating Pressure<br>A = Effective Area<br>(Extend or Retract) | psi<br>in²            |  |  |

All dimensions are reference only unless specifically toleranced.




# AV & HV

### 1-3/8" Bore

### **Major Benefits**

- · Long life design for low maintenance
- NFPA repairable for extended life providing long term savings
- Wide range of options for easy application and reduced design time
- · Wide range of mounting styles for easy installation







### TO ORDER SPECIFY:

Series, Mounting Style, Bore Size, Stroke, Port Control®, and any Options. Also specify rod diameter if non-standard. Rod couplings and mounting attachments must be ordered separately.

SERIES
AV - 150 psi Air
HV - 1500 psi Hyd.

BORE SIZE
1-3/8" BORE
1/2" Std. Rod Dia.
3/8-24 Thread

STANDARD STROKE LENGTHS

1/2" to 24"
In 1/2" increments
Consult PHD for
longer lengths.

1-3/8" BORE

### **CUSHION OR SHOCK PAD**

- D Cushions on both ends
- DR Cushion on rod end
- DC Cushion on cap end
- B Shock Pads on both ends BR - Shock Pad on rod end
- BC Shock Pad on rod end

Cushions, Shock Pads, and Spring Return are not available on the same end of cylinder. Shock Pads are not available on Series HV units.

### **OVERSIZE ROD**

To be specified only when using a non-standard diameter. Rod diameters available are shown on page 101.

SC

AV

1-3/8

2 - F

- D

5/8 ROD

M-V

### SPRING RETURN

- SC Spring on cap end SR - Spring on rod end (Strokes available
  - in 1/4" increments up to 6".) (±) See option pages.

### and/or **DOUBLE ROD END**

D - Double Rod End Cylinders

NOTES:

Leave blank if not needed.

#### MOUNTING STYLE

- F Foot Mount
- B Bottom Mount, tapped holes in head and cap
- R Rod Mount, tapped holes on front face of head
- T Thread Mount, threaded snout on head (shipped with mounting nut)
- RF Rod End Flange
- CF Cap End Flange
- K Clevis Mount, clevis on cap
- TR Trunnion Mount
- RR Tierod Mount, tierods extend out rod end
- RC Tierod Mount, tierods extend out cap end
- RRC Tierod Mount, tierods extend out both ends

1) For double rod cylinders, rod end options will be applied to both ends of cylinder.

• Marked options provide additional cylinder flexibility, but may alter the dimensions.

2) For double rod cylinders, -\_K extension will be applied to one end only

### PORT CONTROL®



### OUT FLOW CONTROL VALVE

- P Flow control on both ends
- PR Flow control on head end
- PC Flow control on cap end

#### **OPTIONS**

- A Stroke Adjustment, 1/2" of adjustment standard (not available on Series HV)
- E Magnetic Piston for Series JC1 radial sensing switches
- F #1 Rod End
- (see page 101 for dimensions) (see note 1) #4 Rod End, Female thread on rod
- (see page 101 for dimensions) (see note 1)
- 147 Rodlok (Rod clamping device installed.

  Not available with Z1 or on HV. See option page.) (4)
- J #2X Rod End, twice as long as standard thread (see page 101 for dimensions)
- \_K Extra Rod Extension, in 1/8" increments
- (see page 99) (see note 2) L - Coarse Thread Rod End
- (see page 101 for dimensions) (see note 1)
- M Magnetic Piston for Series JC1 reed and teachable switches
- N Plain Rod End
- (see page 101 for dimensions) (see note 1)
- R Ports in Position #2
- T Ports in Position #3
- U Ports in Position #4
- V Fluoroelastomer Seals
- W Close Tolerance Stroke, ±0.005" stroke length
- Z1 Electroless Nickel Plate all ferrous parts excluding Rod Ends



Options may affect unit length. See dimensional pages and option information details.

### **SERIES JC1xDx MAGNETIC SWITCHES**

(head end/primary mounting end).

| PART NO.                                   | DESCRIPTION                                 |  |  |
|--------------------------------------------|---------------------------------------------|--|--|
| JC1RDU-5                                   | PNP or NPN DC Reed, 5 meter cable           |  |  |
| JC1RDU-K                                   | PNP or NPN DC Reed, Quick Connect           |  |  |
| JC1ADU-K                                   | AC Reed, Quick Connect (M12)                |  |  |
| JC1HDP-5                                   | PNP (Source), Radial Sensing, 5 meter cable |  |  |
| JC1HDP-K                                   | PNP (Source), Radial Sensing, Quick Connect |  |  |
| JC1HDN-5                                   | NPN (Sink), Radial Sensing, 5 meter cable   |  |  |
| JC1HDN-K                                   | NPN (Sink), Radial Sensing, Quick Connect   |  |  |
| NOTE: Switches must be ordered separately. |                                             |  |  |

### CORDSETS FOR SERIES IC1VDV SWITCHES

|          | COMPACTO I ON SCHILD SCHADA SWITCHES |                                                      |  |  |  |
|----------|--------------------------------------|------------------------------------------------------|--|--|--|
| PART NO. |                                      | DESCRIPTION                                          |  |  |  |
|          | 63549-02                             | M8, 3 pin, Straight Female Connector, 2 meter cable  |  |  |  |
|          | 63549-05                             | M8, 3 pin, Straight Female Connector, 5 meter cable  |  |  |  |
|          | 81284-1-010                          | M12, 4 pin. Straight Female Connector, 2 meter cable |  |  |  |

NOTE: Cordsets are ordered separately.

# SERIES JC1ST TWO POSITION TEACHABLE

|                      | MAGNETIO OWITOTIES |                                                     |  |  |  |  |
|----------------------|--------------------|-----------------------------------------------------|--|--|--|--|
| PART NO. DESCRIPTION |                    | DESCRIPTION                                         |  |  |  |  |
|                      | JC1STP-2           | PNP (Source), Solid State, 12-30 VDC, 2 meter cable |  |  |  |  |
|                      | JC1STP-K           | PNP (Source), Solid State, 12-30 VDC, Quick Connect |  |  |  |  |

NOTE: Switches must be ordered separately.

#### CORDSET FOR SERIES JC1ST SWITCHES

| COMPORT FOR CEMILS SO TO CONTROLLS |             |                                                     |
|------------------------------------|-------------|-----------------------------------------------------|
|                                    | PART NO.    | DESCRIPTION                                         |
|                                    | 81284-1-001 | M8, 4 pin, Straight Female Connector, 5 meter cable |
|                                    |             |                                                     |

**NOTE:** Cordsets are ordered separately.

### SWITCH MOUNTING BRACKET

| PART NO. | DESCRIPTION                         |  |
|----------|-------------------------------------|--|
| 92101    | Mounts Series JC1 Switch to Tie Rod |  |

**NOTE:** Brackets are ordered separately.



# ENGINEERING DATA: Series AV & HV Cylinders - 1-3/8" Bore

| SPECIFICATIONS                | SERIES AV                      | SERIES HV                      |
|-------------------------------|--------------------------------|--------------------------------|
| OPERATING PRESSURE            |                                |                                |
| STANDARD CYLINDER (NO RODLOK) | 20 to 150 psi air              | 40 to 1500 psi hyd*            |
| CYLINDER WITH RODLOK          | 30 to 150 psi air              | _                              |
| OPERATING TEMPERATURE         | -20° to +180°F [-29° to +82°C] | -20° to +180°F [-29° to +82°C] |
| STROKE TOLERANCE              | ±0.032                         | ±0.032                         |
| LUBRICATION                   | Permanently lubricated         | _                              |
| MAINTENANCE                   | Field repairable               | Field repairable               |

<sup>\*</sup>Hydraulic rating is based on non-shock hydraulic service.

### **CYLINDER FORCE TABLE**

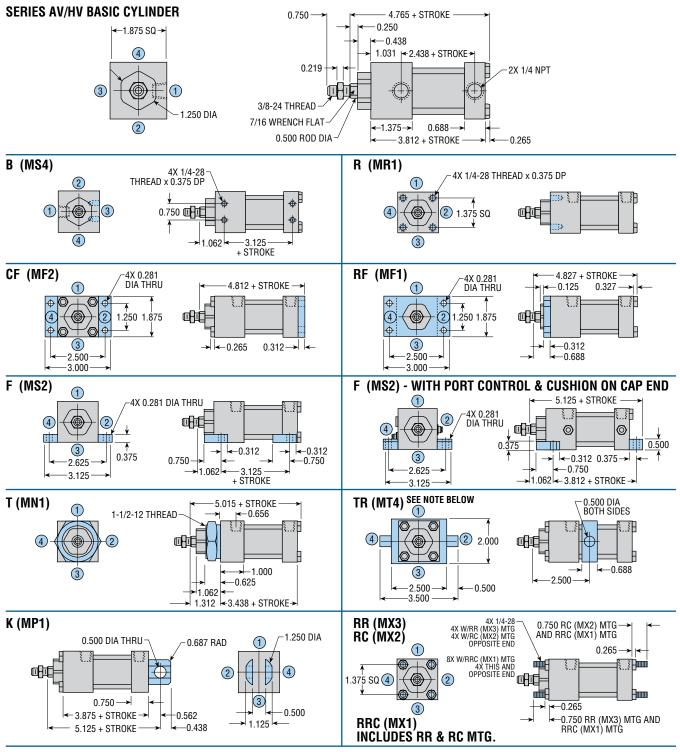
|  | SERIES   | CYLINDER<br>BORE | _          | ROD<br>DIRECTION | EFFECTIVE<br>AREA FORCE<br>Ib/psi | AIR CONSUMPTION at<br>80 psi<br>CUBIC ft/in OF STROKE | DISPLACEMENT<br>gal/in<br>OF STROKE |
|--|----------|------------------|------------|------------------|-----------------------------------|-------------------------------------------------------|-------------------------------------|
|  | AV<br>HV | 1-3/8            | 1/2<br>5/8 | EXTEND           | 1.485                             | 0.0055                                                | 0.0064                              |
|  |          |                  |            | RETRACT          | 1.289                             | 0.0048                                                | 0.0056                              |
|  |          |                  |            | EXTEND           | 1.485                             | 0.0055                                                | 0.0064                              |
|  |          |                  | 3/0        | RETRACT          | 1.178                             | 0.0044                                                | 0.0051                              |

**NOTE:** Use the RETRACT figures for calculating double rod cylinder forces in both directions.

### **MAXIMUM ALLOWABLE EXTEND STROKE**

| SERIES        | ROD      | CYLINDER FORCE (Ib) |     |     |      |      |      |      |      |
|---------------|----------|---------------------|-----|-----|------|------|------|------|------|
| SENIES        | DIAMETER | 100                 | 200 | 500 | 1000 | 1500 | 2000 | 3000 | 5000 |
| 1-3/8" AV, HV | 1/2      | 48"                 | 34" | 21" | 15"  | 12"  | _    | _    | _    |
|               | 5/8      | 74"                 | 53" | 33" | 24"  | 19"  | _    | _    | _    |

| SERIES     | UNIT WEIGHTS (lb) |                          |  |
|------------|-------------------|--------------------------|--|
| SENIES     | ZERO STROKE       | ADDER PER INCH OF STROKE |  |
| PLAIN UNIT | 2.56              | 0.12                     |  |


| CYLINDER FORCE CALCULATIONS                  |                       |  |  |  |
|----------------------------------------------|-----------------------|--|--|--|
|                                              | Imperial<br>F = P x A |  |  |  |
| F = Cylinder Force                           | lbs                   |  |  |  |
| P = Operating Pressure<br>A = Effective Area | psi                   |  |  |  |
| A = Effective Area<br>(Extend or Retract)    | in²                   |  |  |  |

### **Application & Sizing Assistance**

Use PHD's free online Product Sizing and Application at www.phdinc.com/apps/sizing



### **DIMENSIONS:** Series AV & HV Cylinders - 1-3/8" Bore



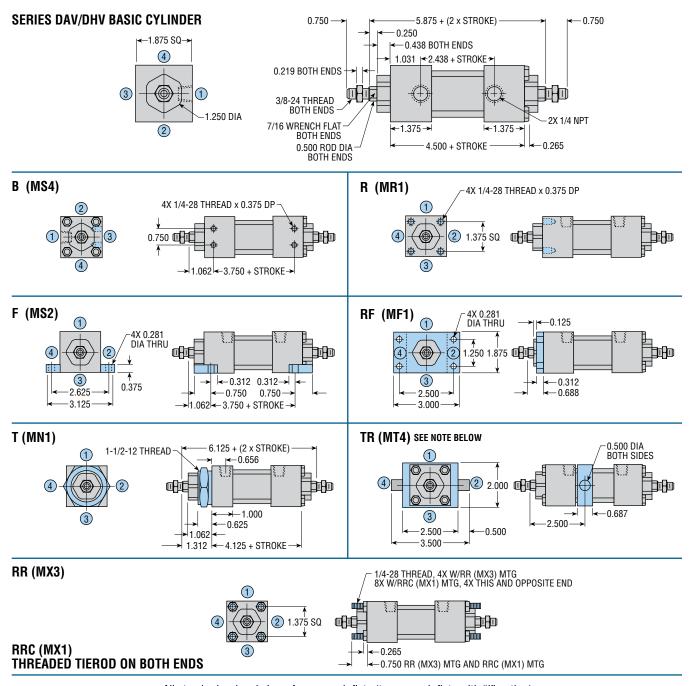
All standard rod ends have four wrench flats (two wrench flats with "I" option).

PORT POSITIONS: INDICATED BY CIRCLED NUMBERS

**CUSHIONS:** CYLINDER LENGTH IS NOT AFFECTED BY ADDITION OF CUSHIONS

SHOCK PADS : ADD 0.250 in TO ALL (+ STROKE) DIMENSIONS FOR EACH SHOCK PAD

SPRING RETURN: ADD AN ADDITIONAL STROKE LENGTH TO ALL (+ STROKE) DIMENSIONS (2 x STROKE)


OVERSIZE RODS: SEE PAGE 101 FOR OVERSIZE ROD SPECIFICATIONS.

TR MOUNTING NOTE: SENSING IN THE EXTEND DIRECTION WILL BE AFFECTED ON UNITS WITH -E OR -M OPTION BECAUSE OF THE TRUNNION MOUNTING BLOCK.

All dimensions are reference only unless specifically toleranced.



### **DIMENSIONS:** Series DAV & DHV Double Rod End Cylinders - 1-3/8" Bore



All standard rod ends have four wrench flats (two wrench flats with "I" option)

PORT POSITIONS: INDICATED BY CIRCLED NUMBERS

CUSHIONS: CYLINDER LENGTH IS NOT AFFECTED BY ADDITION OF CUSHIONS

SHOCK PADS: ADD 0.250 in TO ALL (+ STROKE) DIMENSIONS FOR EACH SHOCK PAD

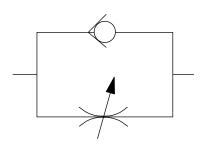
SPRING RETURN: ADD AN ADDITIONAL STROKE LENGTH TO ALL (+ STROKE) DIMENSIONS (2 x STROKE)

OVERSIZE RODS: SEE PAGE 101 FOR OVERSIZE ROD SPECIFICATIONS.

TR MOUNTING NOTE: SENSING IN THE EXTEND DIRECTION WILL BE AFFECTED ON UNITS WITH -E OR -M OPTION BECAUSE OF THE TRUNNION MOUNTING BLOCK.






PC

PR

### PORT CONTROL®

The exclusive PHD Port Control®, based on the "meter-out" principle, features an adjustable needle and a separate ball check. Both are built into the cylinder end cap and are used to control the speed of the cylinder over its entire stroke.

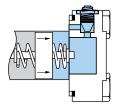
The self-locking needle has micrometer threads and is adjustable under pressure. It determines the orifice size which controls the exhaust volume. The separate ball check is closed while fluid is exhausting from the cylinder, but opens to permit full flow of



incoming fluids. The PHD Port Control® provides the optimum in speed control for small bore cylinders. It saves space and eliminates the cost of installation and fittings for external flow control valves.



DC

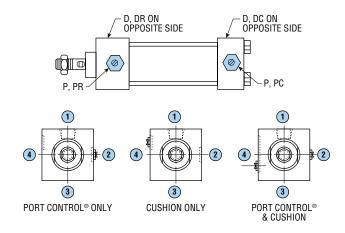

DR

### **ADJUSTABLE CUSHION**

PHD Cushions are designed for smooth deceleration at the end of stroke. When the cushion is activated the remaining volume in the cylinder must exhaust past an adjustable needle which controls the amount of deceleration.

Effective cushion length 1/2"

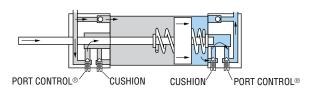
### POPPET STYLE




1-3/8" BORE

# STANDARD PORT CONTROL® AND CUSHION NEEDLE POSITIONS

Port Control® and cushion needles are located on opposite sides adjacent to port. Please consult distributor or PHD to check availability of special Port Control® or cushion needle positions.


Location may vary depending on mounting and option combinations.



# PORT CONTROL® AND ADJUSTABLE CUSHION COMBINATION

The cushion and Port Control® combination is available on the 1-3/8" bore. This cushion is activated when a seal, which is traveling with the piston, seals against the cylinder end cap. This causes the remaining volume in the cylinder to exhaust past an adjustable needle which controls the amount of deceleration. The spring, which extends the seal from the piston, permits the seal to act as a check valve to allow full flow back into the cylinder for immediate reversing. The cushion seal for air units is made of urethane while seals for oil units are close tolerance metal.

### POPPET STYLE

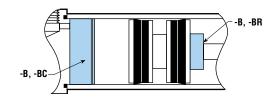




### **OPTIONS:** Series AV & HV Cylinders - 1-3/8" Bore



BC


BR

### **SHOCK PADS**

Polyurethane pads for absorption of shock and noise (not available on HV hydraulic units). Reducing shock permits higher piston velocities for shorter cycle times. Reducing noise levels provides improved environment for increased productivity. Eliminates metal to metal contact between piston and end caps.

### Available with all options EXCEPT:

- Same end as Cushion (-D, -DC, or -DR)
- Spring end of Spring Return cylinder (-SC or -SR)
- Same end as Stroke Adjustment (-A)

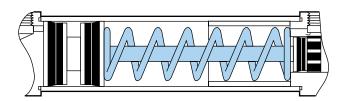




SC

# SPRING RETURN Available in 1/4" increments

All standard A, AV and HV Cylinders from 1/4" to 6" of stroke can be built with internal springs to return or extend the piston rod in single acting applications. The standard spring provides a preload and a spring rate per chart below. Other spring combinations will be quoted on request.


 STROKE
 PRELOAD
 RATE

 1/4"-3"
 4 lb
 7 lb/in

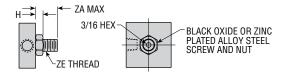
 3-1/4"-6"
 2 lb
 3-1/2 lb/in

### Available with all options EXCEPT:

- Cushion on the spring end (-D, -DC, or -DR)
- Shock pad on the spring end (-B, -BC, or -BR)
- Stroke adjustment on the spring end (-A)






# CYLINDER STROKE ADJUSTMENT (SERIES AV)

Stroke adjustment screws are available to decrease the retraction stroke of any Series AV. The standard adjusting range is 1/2 inch. Longer adjusting lengths are available on request.

| <b>BORE SIZE</b> | Н     | ZA    | ZE     |
|------------------|-------|-------|--------|
| 1-3/8            | 0.462 | 1.000 | 1/2-20 |

### Available with all options EXCEPT:

- Cushion on the cap end (-D or -DC)
- Shock pad on the cap end (-B or -BC)
- Spring on the cap end (SC)
- Cap flange mounting (CF)
- Clevis mount on cap (K)



### **PORT POSITIONS**

### STANDARD PORT POSITION 1

4 3 2



**PORT POSITION 3** 



R

**PORT POSITION 2** 





**PORT POSITION 4** 





### **MAGNETIC PISTON FOR SERIES JC1 RADIAL SENSING SWITCHES**

PHD Cylinders may be equipped with a magnetic band (specify -E) on the piston which activates externally mounted radial sensing switches. These switches allow the interfacing of the Tom Thumb® air or hydraulic cylinder to various logic systems. This option is for use with the following switches.

#### SERIES JC1xDx MAGNETIC SWITCHES

| PART NO. | DESCRIPTION                                 |
|----------|---------------------------------------------|
| JC1HDP-5 | PNP (Source), Radial Sensing, 5 meter cable |
| JC1HDP-K | PNP (Source), Radial Sensing, Quick Connect |
| JC1HDN-5 | NPN (Sink), Radial Sensing, 5 meter cable   |
| JC1HDN-K | NPN (Sink), Radial Sensing, Quick Connect   |

NOTE: Switches must be ordered separately.

### **CORDSETS FOR SERIES JC1xDx SWITCHES**

| PART NO.    | DESCRIPTION                                          |  |  |
|-------------|------------------------------------------------------|--|--|
| 63549-02    | M8, 3 pin, Straight Female Connector, 2 meter cable  |  |  |
| 63549-05    | M8, 3 pin, Straight Female Connector, 5 meter cable  |  |  |
| 81284-1-010 | M12. 4 pin. Straight Female Connector, 2 meter cable |  |  |

NOTE: Cordsets are ordered separately.



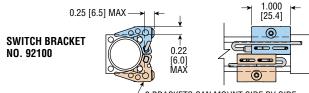
### **MAGNETIC PISTON FOR SERIES JC1 REED & TEACHABLE SWITCHES**

The PHD Magnetic Reed Switches may be used in situations where the radial sensing switches are not applicable. As with the radial sensing switches, a magnetic band (specify -M) on the piston activates the externally mounted PHD Reed Switches. The Reed Switches may be used to signal a programmable controller. sequencer, relay, or in some cases, a valve solenoid. This option is for use with the following switches.

The Teachable Switch provides the ability to identify two separately programmable positions with a single switch. Programmable capability means no "fine tuning." With switch properly aligned, just place actuator in desired positions and program. Solid-state sensing technology provides a highly reliable switch.

See Series JC1 Switches at phdinc.com for more information.

### **SERIES JC1ST REED SWITCHES**


| PART NO. | DESCRIPTION                       |
|----------|-----------------------------------|
| JC1RDU-5 | PNP or NPN DC Reed, 5 meter cable |
| JC1RDU-K | PNP or NPN DC Reed, Quick Connect |
| JC1ADU-K | AC Reed, Quick Connect (M12)      |

NOTE: Switches must be ordered separately.

#### SERIES JC1ST TEACHABLE SWITCHES

| PART NO. | DESCRIPTION                                         |  |  |  |
|----------|-----------------------------------------------------|--|--|--|
| JC1STP-2 | PNP (Source), Solid State, 12-30 VDC, 2 meter cable |  |  |  |
| JC1STP-K | PNP (Source), Solid State, 12-30 VDC, Quick Connect |  |  |  |

NOTE: Switches must be ordered separately.



 $^ot$  2 Brackets can mount side by side



### FLUOROELASTOMER SEALS

Fluoroelastomer seals are available to achieve seal compatibility with certain fluids. Seal compatibility should be checked with the fluid manufacturer for proper application. Consult PHD for high temperature use.



### ELECTROLESS NICKEL PLATING

Electroless nickel plating is done on all externally exposed ferrous parts except rods and rod end, or parts made of stainless steel or aluminum. This optional plating treatment gives an alternative method of protecting the cylinder from severe environments.

**NOTE:** Standard plating is Brite Zinc.

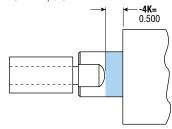


### **CLOSE TOLERANCE STROKE**

This option may be specified when a precise stroke length is required and stroke adjustment is not acceptable. By specifying this option, a stroke length with a tolerance of ±0.005 will be supplied. Standard stroke tolerance is ±0.032.

Maximum stroke for cylinders with close tolerance is 18".

NOTE: This option is not available with shock pads (-B, -BC, or -BR).


### **EXTRA ROD EXTENSION**

This option may be specified when extra plain rod extension between rod flats and cylinder snout is desired. Length is specified in 1/8" increments.

Length code example:

-4K = 1/2" of extra rod extension

-8K = 1", etc.



NOTE: On double rod end cylinders with - K specified will be applied to one end of cylinder only (head end/ primary mounting end).

All dimensions are reference only unless specifically toleranced.



### **OPTIONS:** Series AV & HV Cylinders - 1-3/8" Bore

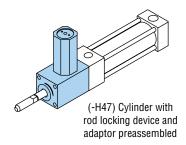
### H47

### **RODLOK CYLINDER & RODLOK**

Available on single rod Series AV units only. 

•

PHD's Rodlok is ideal for locking the piston rod while in a static/ stationary position. When the pressure is removed from the port of the Rodlok, the mechanism will grip the rod and prevent it from moving. The loads are held indefinitely without power. Rodlok performance is application and environment sensitive (cleanliness of rod or Rodlok will also affect performance). THE RODLOK IS NOT DESIGNED TO BE USED AS A PERSONAL SAFETY DEVICE.


Option H47 provides a cylinder and Rodlok pre-assembled. The port for the Rodlok will be assembled in the same position as the port on the extend end of the cylinder.

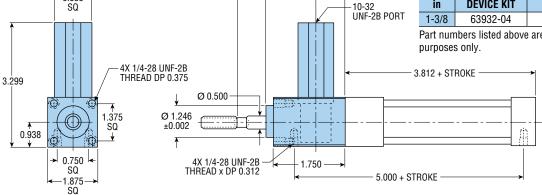
Replacement Rodlok kits can be purchased separately. See chart at right. The locking device and adaptor are not available with the -Z1 corrosion resistant finish.

-H47 available on B, R, and RC mounting only.

**←**0.855-

This option does not dimensionally comply with the NFPA standard specifications.




| BORE  | STATIC LOCKING FORCE* |     |  |  |
|-------|-----------------------|-----|--|--|
| in    | lb                    | N   |  |  |
| 1-3/8 | 135                   | 600 |  |  |

**NOTE:** \*Locking force given is the actual locking force with a dry, clean rod and does not include any safety factor.

### REPLACEMENT RODLOK KITS



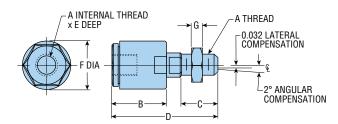
Part numbers listed above are intended for replacement



2.434 2.184

### NOTE:

BREAKAWAY FORCE ON CYLINDERS WITH RODLOK APPROXIMATELY 30 psi.

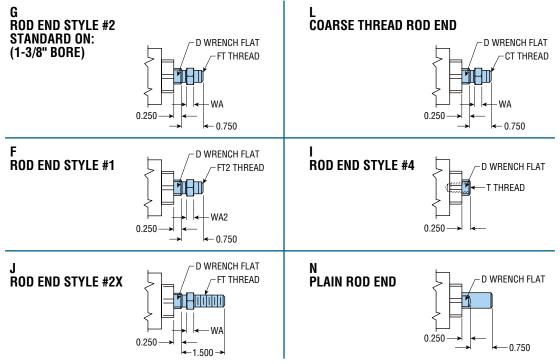

### ACCESSORIES: Series AV & HV Cylinders - 1-3/8" Bore

1.000

### SELF-ALIGNING PISTON ROD COUPLERS

Rod Couplers eliminate expensive precision machining for mounting fixed or rigid cylinder on guide or slide applications.

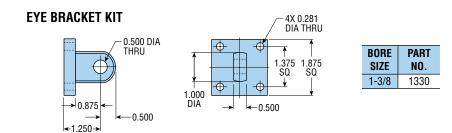
Cylinder efficiency is increased by eliminating friction caused by misalignment. Couplers compensate for 2° angular error and 1/32" lateral misalignment on push and pull stroke.

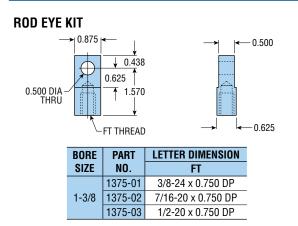


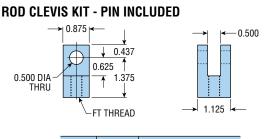

| MODEL | LETTER DIMENSION |       |       |       |       |       |       |  |  |
|-------|------------------|-------|-------|-------|-------|-------|-------|--|--|
| NO.   | Α                | В     | C     | D     | E     | F     | G     |  |  |
| 375   | 3/8-24           | 1.000 | 0.625 | 1.875 | 0.500 | 0.875 | 0.219 |  |  |
| 437   | 7/16-20          | 1.125 | 0.650 | 2.187 | 0.500 | 1.000 | 0.250 |  |  |
| 500   | 1/2-20           | 1.125 | 0.650 | 2.187 | 0.500 | 1.000 | 0.312 |  |  |

To order, specify the model number.




### 1-3/8" BORE CYLINDERS





All standard rod ends have four wrench flats (two wrench flats with "I" option).

|  | BORE  | ROD TYPE |          |         |      |         |         |                    |       |       |
|--|-------|----------|----------|---------|------|---------|---------|--------------------|-------|-------|
|  | SIZE  | NUD ITE  | DIAMETER | CT      | D    | FT      | FT2     | T                  | WA    | WA2   |
|  | 1-3/8 | STANDARD | 0.500    | 3/8-16  | 7/16 | 3/8-24  | 7/16-20 | 3/8-24 x 0.625 DP  | 0.219 | 0.250 |
|  |       | OVERSIZE | 0.625    | 7/16-14 | 9/16 | 7/16-20 | 1/2-20  | 7/16-20 x 0.625 DP | 0.250 | 0.312 |

NOTE: On double rod cylinders, both rod ends will be the same on both ends of the cylinder.







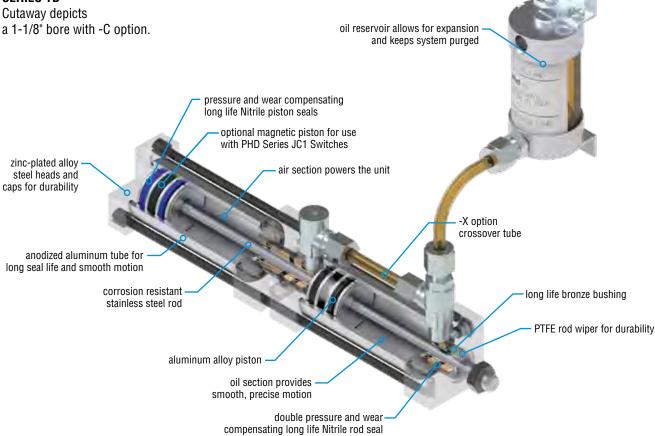
| BORE  | KIT   | LETTER DIMENSION |
|-------|-------|------------------|
| SIZE  | NO.   | FT               |
|       | 12909 | 3/8-24 TO SLOT   |
| 1-3/8 | 12910 | 7/16-20 TO SLOT  |
|       | 12911 | 1/2-20 TO SLOT   |

All dimensions are reference only unless specifically toleranced.

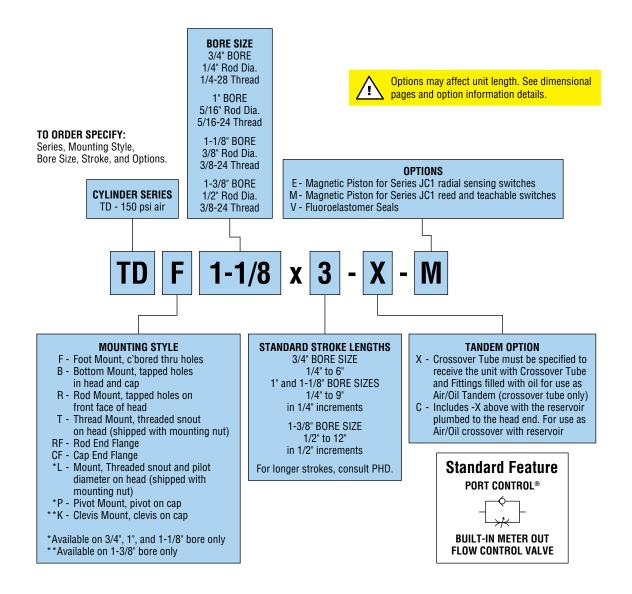


### **AIR/OIL TANDEM CYLINDERS**

# TD


### 3/4", 1", 1-1/8", 1-3/8" Bore

### **Major Benefits**


- Precise speed control and smooth operation at low velocities with -C option
- · Long life design for low maintenance
- NFPA repairable for extended life providing long term savings
- Wide range of options for easy application and reduced design time
- · Wide range of mounting styles for easy installation



### **SERIES TD**







### **SERIES JC1xDx MAGNETIC SWITCHES**

| PART NO.                                                 | DESCRIPTION                                                                                                                                                                                      |
|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| JC1RDU-5                                                 | PNP or NPN DC Reed, 5 meter cable                                                                                                                                                                |
| JC1RDU-K                                                 | PNP or NPN DC Reed, Quick Connect                                                                                                                                                                |
| JC1ADU-K                                                 | AC Reed, Quick Connect (M12)                                                                                                                                                                     |
| JC1HDP-5                                                 | PNP (Source), Radial Sensing, 5 meter cable                                                                                                                                                      |
| JC1HDP-K                                                 | PNP (Source), Radial Sensing, Quick Connect                                                                                                                                                      |
| JC1HDN-5                                                 | NPN (Sink), Radial Sensing, 5 meter cable                                                                                                                                                        |
| JC1HDN-K                                                 | NPN (Sink), Radial Sensing, Quick Connect                                                                                                                                                        |
| JC1RDU-K<br>JC1ADU-K<br>JC1HDP-5<br>JC1HDP-K<br>JC1HDN-5 | PNP or NPN DC Reed, Quick Connect AC Reed, Quick Connect (M12) PNP (Source), Radial Sensing, 5 meter cable PNP (Source), Radial Sensing, Quick Connect NPN (Sink), Radial Sensing, 5 meter cable |

**NOTE:** Switches must be ordered separately.

### **CORDSETS FOR SERIES JC1xDx SWITCHES**

| PART NO.    | DESCRIPTION                                          |
|-------------|------------------------------------------------------|
| 63549-02    | M8, 3 pin, Straight Female Connector, 2 meter cable  |
| 63549-05    | M8, 3 pin, Straight Female Connector, 5 meter cable  |
| 81284-1-010 | M12, 4 pin, Straight Female Connector, 2 meter cable |

**NOTE:** Cordsets are ordered separately.

### SERIES JC1ST TWO POSITION TEACHABLE MAGNETIC SWITCHES

| ١ |          |                                                     |
|---|----------|-----------------------------------------------------|
|   | PART NO. | DESCRIPTION                                         |
| ĺ | JC1STP-2 | PNP (Source), Solid State, 12-30 VDC, 2 meter cable |
|   | JC1STP-K | PNP (Source), Solid State, 12-30 VDC, Quick Connect |

**NOTE:** Switches must be ordered separately.

### **CORDSET FOR SERIES JC1ST SWITCHES**

| PART NO.    | DESCRIPTION                                         |  |  |  |  |  |
|-------------|-----------------------------------------------------|--|--|--|--|--|
| 81284-1-001 | M8, 4 pin, Straight Female Connector, 5 meter cable |  |  |  |  |  |
| NOTE O      |                                                     |  |  |  |  |  |

**NOTE:** Cordsets are ordered separately.

### **SWITCH MOUNTING BRACKET**

| PART NO. | DESCRIPTION                         |
|----------|-------------------------------------|
| 92101    | Mounts Series JC1 Switch to Tie Rod |

**NOTE:** Brackets are ordered separately.



### ENGINEERING DATA: Series TD Cylinders - 3/4", 1", 1-1/8", 1-3/8" Bore

| SPECIFICATIONS        | SERIES AV                                                          |  |  |  |
|-----------------------|--------------------------------------------------------------------|--|--|--|
| OPERATING PRESSURE    |                                                                    |  |  |  |
| STANDARD              | 20 to 150 psi air                                                  |  |  |  |
| WITH -X OR -C         | 30 to 150 psi air                                                  |  |  |  |
| RESERVOIR PRESSURE    | 20 psi recommended                                                 |  |  |  |
| OPERATING TEMPERATURE | -20° to +180°F [-29° to +82°C]                                     |  |  |  |
| STROKE TOLERANCE      | ±0.032                                                             |  |  |  |
| LUBRICATION           | Permanently lubricated                                             |  |  |  |
| TANDEM FLUID          | SAE 32 weight oil (viscosity at 100°F is 158. SSU at 250° is 45.1) |  |  |  |
| MAINTENANCE           | Field repairable                                                   |  |  |  |

### **CYLINDER FORCE TABLE**

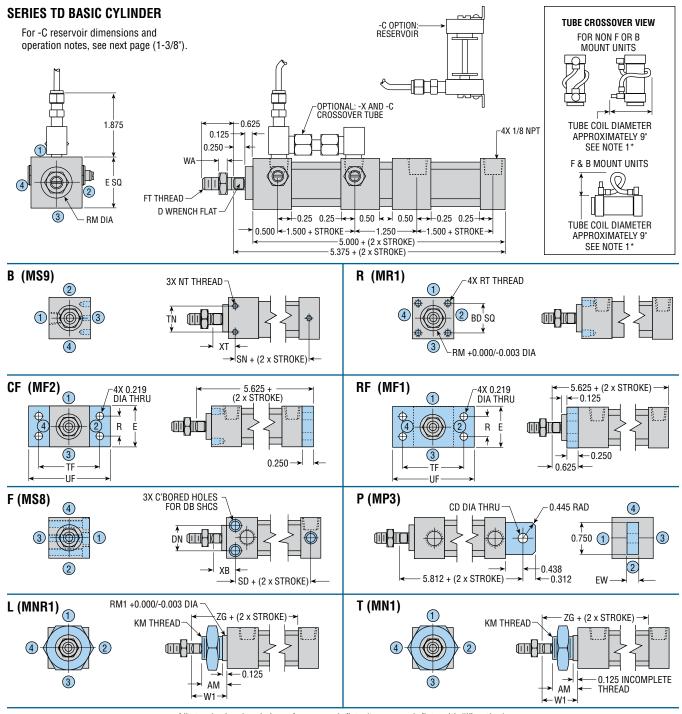
|        | CVLINDED         | R ROD    | ROD       | EFFECTIVE     | AREA FORCE     | AIR CONSUMI   | DISPLACEMENT   |           |  |
|--------|------------------|----------|-----------|---------------|----------------|---------------|----------------|-----------|--|
| SERIES | CYLINDER<br>BORE |          | DIRECTION | WITH -C OR -X | W/OUT -C OR -X | CUBIC ft/in   | OF STROKE      | gal/in    |  |
|        |                  | DIAMETER | DINECTION | lb/psi        | lb/psi         | WITH -C OR -X | W/OUT -C OR -X | OF STROKE |  |
|        | 3/4              | 1/4      | EXTEND    | 0.442         | 0.835          | 0.0016        | 0.0030         | 0.0019    |  |
|        | 3/4              | 1/4      | RETRACT   | 0.393         | 0.786          | 0.0014        | 0.0028         | 0.0017    |  |
|        | 4                | 5/16     | EXTEND    | 0.785         | 1.494          | 0.0029        | 0.0055         | 0.0034    |  |
| TD     | '                |          | RETRACT   | 0.709         | 1.418          | 0.0026        | 0.0052         | 0.0031    |  |
| ID     | 1-1/8            | 3/8      | EXTEND    | 0.994         | 1.877          | 0.0037        | 0.0069         | 0.0043    |  |
|        | 1-1/0            |          | RETRACT   | 0.883         | 1.766          | 0.0032        | 0.0064         | 0.0038    |  |
|        | 1 2/0            | 1/0      | EXTEND    | 1.485         | 2.774          | 0.0055        | 0.0103         | 0.0064    |  |
|        | 1-3/8            | 1/2      | RETRACT   | 1.289         | 2.578          | 0.0048        | 0.0096         | 0.0056    |  |

### **MAXIMUM ALLOWABLE EXTEND STROKE**

| SERIES                 | ecores ROD |     |     | CYLINDER FORCE (Ib) |      |      |      |      |      |  |  |
|------------------------|------------|-----|-----|---------------------|------|------|------|------|------|--|--|
| SENIES                 | DIAMETER   | 100 | 200 | 500                 | 1000 | 1500 | 2000 | 3000 | 5000 |  |  |
| 0/4" 4" 4 4/0"         | 1/4        | 12" | 9"  | 6"                  | _    | _    | _    | _    | _    |  |  |
| 3/4", 1", 1-1/8"<br>TD | 5/16       | 18" | 13" | 8"                  | _    | _    | _    | _    | _    |  |  |
| 10                     | 3/8        | 26" | 18" | 12"                 | _    | _    | _    | _    | _    |  |  |
| 1-3/8" TD              | 1/2        | 48" | 34" | 21"                 | _    | _    | _    | _    | _    |  |  |

### MAXIMUM AIR/OIL TANDEM CYLINDER VELOCITY (in/sec)

|                |         | BORE |      |        |        |  |  |  |  |  |
|----------------|---------|------|------|--------|--------|--|--|--|--|--|
| PRESSURE (psi) |         | 3/4" | 1"   | 1-1/8" | 1-3/8" |  |  |  |  |  |
| 40             | EXTEND  | 0.68 | 2.26 | 2.66   | 3.07   |  |  |  |  |  |
| 40             | RETRACT | 1.00 | 2.26 | 2.30   | 2.60   |  |  |  |  |  |
| 60             | EXTEND  | 1.26 | 3.07 | 3.33   | 4.13   |  |  |  |  |  |
| 00             | RETRACT | 1.50 | 3.00 | 3.24   | 3.52   |  |  |  |  |  |
| 80             | EXTEND  | 1.71 | 3.42 | 4.28   | 4.80   |  |  |  |  |  |
| 00             | RETRACT | 2.00 | 3.42 | 3.87   | 4.44   |  |  |  |  |  |
| 100            | EXTEND  | 2.06 | 4.28 | 5.00   | 5.21   |  |  |  |  |  |
| 100            | RETRACT | 2.44 | 4.44 | 4.61   | 4.80   |  |  |  |  |  |


Minimum recommended velocity for all bore sizes at pressures from  $40\ \text{to}\ 150\ \text{psi}$  is  $0.133\ \text{in/sec}.$ 

Field Maintenance Videos on filling and bleeding Air/Oil Tandem Actuators are available. Contact your local PHD distributor or call our toll free number: 1-800-624-8511. Or go online to www.phdinc.com to view working cutaways and applications.

| CYLINDER FORCE CALCULATIONS                  |                       |  |  |  |  |  |  |
|----------------------------------------------|-----------------------|--|--|--|--|--|--|
|                                              | Imperial<br>F = P x A |  |  |  |  |  |  |
| F = Cylinder Force                           | lbs                   |  |  |  |  |  |  |
| P = Operating Pressure<br>A = Effective Area | psi                   |  |  |  |  |  |  |
| A = Effective Area<br>(Extend or Retract)    | in²                   |  |  |  |  |  |  |



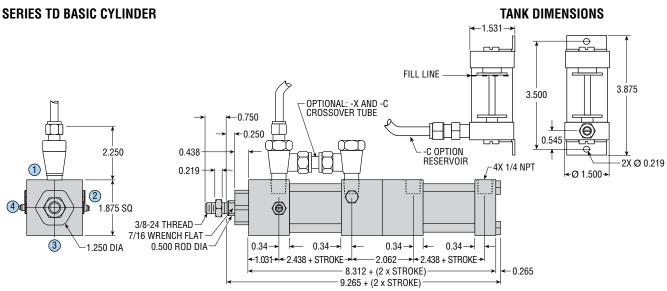
### **DIMENSIONS:** Series TD Cylinders - 3/4", 1", 1-1/8" Bore



All standard rod ends have four wrench flats (two wrench flats with "I" option).

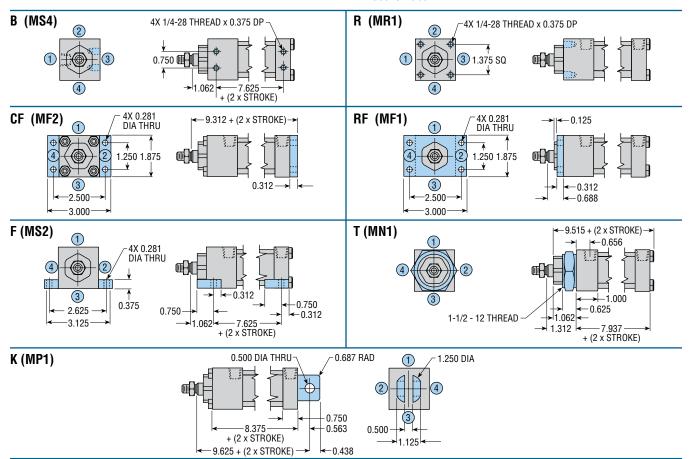
| BORE  | LETTER DIMENSION                   |       |       |      |     |       |       |       |         |        |                 |       |       |       |                 |       |       |       |       |
|-------|------------------------------------|-------|-------|------|-----|-------|-------|-------|---------|--------|-----------------|-------|-------|-------|-----------------|-------|-------|-------|-------|
| SIZE  | SIZE AM BD CD D DB DN E EW FT KM N |       |       |      |     |       |       | NT    | R       | RM     | RM1             | RT    | SD    | SN    | TF              | TN    |       |       |       |
| 3/4   | 0.625                              | 0.750 | 0.250 | 3/16 | #8  | 0.625 | 1.000 | 0.250 | 1/4-28  | 5/8-18 | 8-32 x 0.18 DP  | 0.500 | 0.625 | 0.687 | 8-32 x 0.25 DP  | 4.562 | 4.562 | 1.500 | 0.625 |
| 1     | 0.625                              | 1.000 | 0.375 | 1/4  | #10 | 0.875 | 1.375 | 0.375 | 5/16-24 | 3/4-16 | 10-32 x 0.25 DP | 0.875 | 0.750 | 0.812 | 8-32 x 0.25 DP  | 4.500 | 4.500 | 1.875 | 0.875 |
| 1-1/8 | 0.875                              | 1.125 | 0.375 | 5/16 | #10 | 1.000 | 1.500 | 0.375 | 3/8-24  | 1-14   | 10-32 x 0.25 DP | 1.000 | 0.750 | 1.062 | 10-32 x 0.25 DP | 4.500 | 4.500 | 2.000 | 1.000 |

| BORE  | LETTER DIMENSION |       |       |       |       |       |  |  |  |  |  |
|-------|------------------|-------|-------|-------|-------|-------|--|--|--|--|--|
| SIZE  | UF               | WA    | W1    | XB    | XT    | ZG    |  |  |  |  |  |
| 3/4   | 2.000            | 0.156 | 0.875 | 0.562 | 0.562 | 5.875 |  |  |  |  |  |
| 1     | 2.375            | 0.188 | 0.875 | 0.625 | 0.625 | 5.875 |  |  |  |  |  |
| 1-1/8 | 2.500            | 0.219 | 1.125 | 0.625 | 0.625 | 6.125 |  |  |  |  |  |


PORT POSITIONS: INDICATED BY CIRCLED NUMBERS

**NOTE**: \*FOR -X AND -C OPTIONS WITH STROKES OF 0.250 in OR LESS, THE CROSSOVER TUBE WILL BE COILED AROUND CYLINDERS FOR ALL NON B OR F MOUNTING UNITS. F & B MOUNTING UNITS WILL HAVE TUBE COILED ABOVE CYLINDER DUE TO DISTANCE BETWEEN FITTINGS. SEE DETAIL ABOVE.

All dimensions are reference only unless specifically toleranced.




### **DIMENSIONS:** Series TD Cylinders - 1-3/8" Bore



### -C Option Air/Oil Tandem Mounting and Operation Notes:

- Mount reservoir vertically above hydraulic section. Excess tubing may be coiled or cut off. Shortening of tubing should be done in a fashion as to keep oil loss to a minimum. Tubing and crossover below cut must be kept full of oil at all times.
- 2. A constant air supply of 20 psi to be on inlet port of reservoir during operation. Use of E-stop or other applications with pressure lost to reservoir may cause rod seal seepage. PHD recommends use of check valve in circuit on reservoir port.
- 3. Oil level in reservoir should be kept at level indicated on label of tube.



All standard rod ends have four wrench flats (two wrench flats with "I" option).

PORT POSITIONS: INDICATED BY CIRCLED NUMBERS





# MAGNETIC PISTON FOR SERIES JC1 RADIAL SENSING SWITCHES

PHD Cylinders may be equipped with a magnetic band (specify -E) on the piston which activates externally mounted radial sensing switches. These switches allow the interfacing of the Tom Thumb<sup>®</sup> air or hydraulic cylinder to various logic systems. This option is for use with the following switches.

### **SERIES JC1xDx MAGNETIC SWITCHES**

| PART NO. | DESCRIPTION                                 |
|----------|---------------------------------------------|
| JC1HDP-5 | PNP (Source), Radial Sensing, 5 meter cable |
| JC1HDP-K | PNP (Source), Radial Sensing, Quick Connect |
| JC1HDN-5 | NPN (Sink), Radial Sensing, 5 meter cable   |
| JC1HDN-K | NPN (Sink), Radial Sensing, Quick Connect   |

**NOTE:** Switches must be ordered separately.

### **CORDSETS FOR SERIES JC1xDx SWITCHES**

| PART NO.    | DESCRIPTION                                          |
|-------------|------------------------------------------------------|
| 63549-02    | M8, 3 pin, Straight Female Connector, 2 meter cable  |
| 63549-05    | M8, 3 pin, Straight Female Connector, 5 meter cable  |
| 81284-1-010 | M12, 4 pin, Straight Female Connector, 2 meter cable |

**NOTE:** Cordsets are ordered separately.



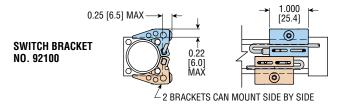
# MAGNETIC PISTON FOR SERIES JC1 REED & TEACHABLE SWITCHES

The PHD Magnetic Reed Switches may be used in situations where the radial sensing switches are not applicable. As with the radial sensing switches, a magnetic band (specify -M) on the piston activates the externally mounted PHD Reed Switches. The Reed Switches may be used to signal a programmable controller, sequencer, relay, or in some cases, a valve solenoid. This option is for use with the following switches.

The Teachable Switch provides the ability to identify two separately programmable positions with a single switch. Programmable capability means no "fine tuning." With switch properly aligned, just place actuator in desired positions and program. Solid-state sensing technology provides a highly reliable switch.

See Series JC1 Switches at phdinc.com for more information.

### **SERIES JC1ST REED SWITCHES**


| PART NO. | DESCRIPTION                       |
|----------|-----------------------------------|
| JC1RDU-5 | PNP or NPN DC Reed, 5 meter cable |
| JC1RDU-K | PNP or NPN DC Reed, Quick Connect |
| JC1ADU-K | AC Reed, Quick Connect (M12)      |

**NOTE:** Switches must be ordered separately.

#### SERIES JC1ST TEACHABLE SWITCHES

| PART NO. | DESCRIPTION                                         |
|----------|-----------------------------------------------------|
| JC1STP-2 | PNP (Source), Solid State, 12-30 VDC, 2 meter cable |
| JC1STP-K | PNP (Source), Solid State, 12-30 VDC, Quick Connect |

NOTE: Switches must be ordered separately.





### **FLUOROELASTOMER SEALS**

Fluoroelastomer seals are available to achieve seal compatibility with certain fluids. Seal compatibility should be checked with the fluid manufacturer for proper application. Consult PHD for high temperature use.



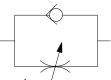
# RESERVOIR ASSEMBLY PLUMBED Air/Oil Tandem models only (Series TD)

See previous page for dimensions.

Available on Series TD tandem models only. The reservoir assembly is plumbed to the unit and is bled of air for easy installation. (Includes -X option).

- 1) Mount reservoir vertically above hydraulic section. Extra tubing may be coiled or cut off. Shorten tubing in a manner that minimizes oil loss. Tubing and crossover should be kept full at all times.
- 2) Keep a constant 20 psi on inlet port of reservoir during operation.
- 3) Oil level in reservoir should be kept at levels indicated on tube label.



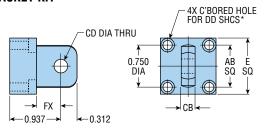

# CROSSOVER TUBE Air/Oil Tandem models only (Series TD)

Available on Series TD tandem models only. These tandem models provide the smooth control of hydraulics with the simplicity of pneumatics. The -X option must be specified to receive the air/oil tandem units filled with oil and bled of air. (It is recommended that these units be used with reservoir and 20 psi oil pressure.)

### STANDARD PORT CONTROL®

The exclusive PHD Port Control®, based on the "meter-out" principle, features an adjustable needle and a separate ball check. Both are built into the cylinder end cap and are used to control the speed of the cylinder over its entire stroke.

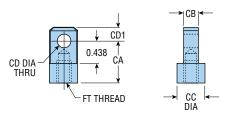
The self-locking needle has micrometer threads and is adjustable under pressure. It determines the orifice size which controls the exhaust volume. The separate ball check is closed while fluid is exhausting from the cylinder, but opens to permit full flow of incoming fluids. The PHD Port Control® provides the optimum in speed control for small bore cylinders. It saves space and eliminates the cost of installation and fittings for external flow control valves.




All dimensions are reference only unless specifically toleranced.



# ACCESSORIES: Series TD Air/Oil Tandem Cylinders - 3/4", 1", 1-1/8" Bore


### **EYE BRACKET KIT**



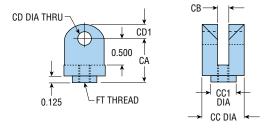
| BORE      | PART    | LETTER DIMENSION |       |       |     |       |       |  |
|-----------|---------|------------------|-------|-------|-----|-------|-------|--|
| SIZE      | NO.     | AB               | CB    | CD    | DD* | E     | FX    |  |
| 3/4       | 1077-01 | 0.750            | 0.248 | 0.250 | #6  | 1.000 | 0.577 |  |
| 1 & 1-1/8 | 1077-03 | 1.000            | 0.373 | 0.375 | #10 | 1.375 | 0.437 |  |

\*For 3/4 bore thru hole only.

### **ROD EYE KIT**



|   | BORE  | PART    |       | LETTER DIMENSION |       |       |       |                    |  |  |  |  |
|---|-------|---------|-------|------------------|-------|-------|-------|--------------------|--|--|--|--|
|   | SIZE  | NO.     | CA    | CB               | CC    | CD CD |       | FT                 |  |  |  |  |
| Ī | 3/4   | 1075-01 | 0.750 | 0.248            | 0.500 | 0.250 | 0.250 | 1/4-28 x 0.375 DP  |  |  |  |  |
| ı | 1     | 1075-04 | 0.875 | 0.373            | 0.750 | 0.375 | 0.375 | 5/16-24 x 0.375 DP |  |  |  |  |
| I | 1-1/8 | 1075-05 | 0.875 | 0.373            | 0.750 | 0.375 | 0.375 | 3/8-24 x 0.312 DP  |  |  |  |  |

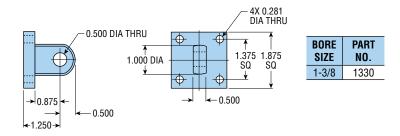

### **CLEVIS BRACKET KIT - PIN INCLUDED**



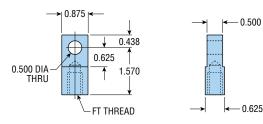
| BORE      | PART  | LETTER DIMENSION |       |       |       |       |     |       |       |       |       |
|-----------|-------|------------------|-------|-------|-------|-------|-----|-------|-------|-------|-------|
| SIZE      | NO.   | AB               | CB    | CC    | CD    | CD1   | DD* | E     | FA    | FL    | L     |
| 3/4       | 12901 | 0.750            | 0.254 | 0.750 | 0.250 | 0.250 | #6  | 1.000 | 0.360 | 1.187 | 0.500 |
| 1 & 1-1/8 | 12903 | 1.000            | 0.379 | 0.875 | 0.375 | 0.375 | #10 | 1.375 | 0.500 | 1.250 | 0.531 |

<sup>\*</sup>For 3/4 bore thru hole only.

### **ROD CLEVIS KIT - PIN INCLUDED**

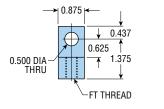



| ĺ | BORE  | PART  |       | LETTER DIMENSION |       |       |       |       |                 |  |  |  |  |
|---|-------|-------|-------|------------------|-------|-------|-------|-------|-----------------|--|--|--|--|
|   | SIZE  | NO.   | CA    | CB               | CC    | CC1   | CD    | CD1   | FT              |  |  |  |  |
| Ī | 3/4   | 12904 | 0.812 | 0.254            | 0.750 | 0.437 | 0.250 | 0.250 | 1/4-28 TO SLOT  |  |  |  |  |
| ı | 1     | 12906 | 0.875 | 0.379            | 0.875 | 0.562 | 0.375 | 0.375 | 5/16-24 TO SLOT |  |  |  |  |
|   | 1-1/8 | 12908 | 0.875 | 0.379            | 0.875 | 0.562 | 0.375 | 0.375 | 3/8-24 TO SLOT  |  |  |  |  |




# ACCESSORIES: Series TD Air/Oil Tandem Cylinders - 1-3/8" Bore

#### **EYE BRACKET KIT**




#### **ROD EYE KIT**



| BORE  | PART    | LETTER DIMENSION   |  |  |  |
|-------|---------|--------------------|--|--|--|
| SIZE  | NO.     | FT                 |  |  |  |
| 1-3/8 | 1375-01 | 3/8-24 x 0.750 DP  |  |  |  |
| 1-3/8 | 1375-02 | 7/16-20 x 0.750 DP |  |  |  |

#### **ROD CLEVIS KIT - PIN INCLUDED**





- 0.625

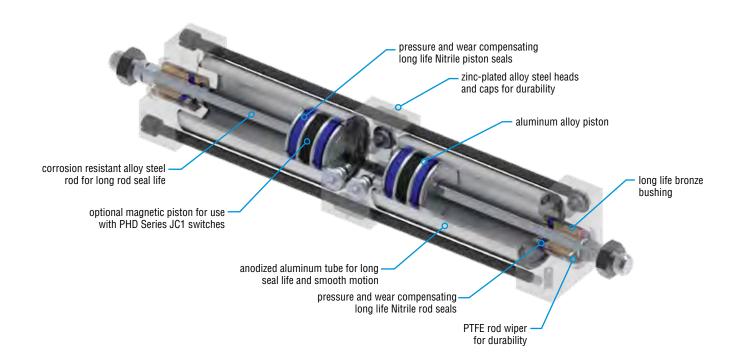
| BORE  | PART  | LETTER DIMENSION |
|-------|-------|------------------|
| SIZE  | NO.   | FT               |
| 1-3/8 | 12909 | 3/8-24 TO SLOT   |
| 1-3/8 | 12910 | 7/16-20 TO SLOT  |

All dimensions are reference only unless specifically toleranced.

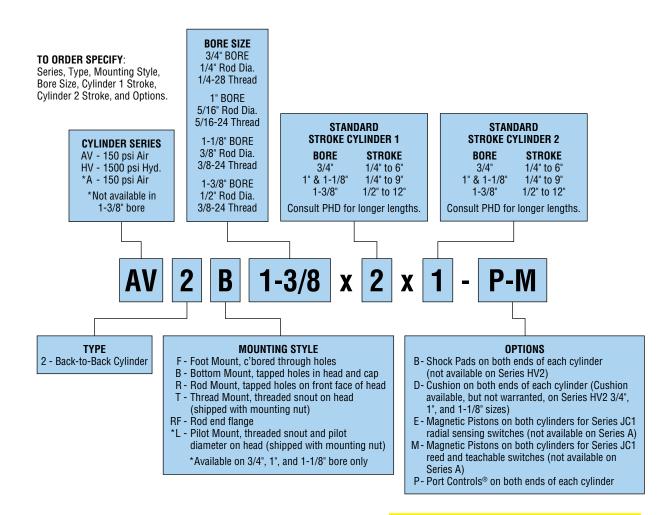


# **AV2, HV2, A2**

# tom thumb®


# 3/4", 1", 1-1/8", 1-3/8" Bore

#### **Major Benefits**


- · Four linear positions with double rod
- · Long life design for low maintenance
- · NFPA repairable for extended life providing long term savings
- · Wide range of options for easy application and reduced design time
- · Wide range of mounting styles for easy installation
- · Simple four position operation



#### Series AV2 Cutaway depicts a 1-1/8" bore AV2 unit.







Options may affect unit length. See dimensional pages and option information details.

#### **SERIES JC1xDx MAGNETIC SWITCHES**

| PART NO.                                 | DESCRIPTION                                 |  |  |  |
|------------------------------------------|---------------------------------------------|--|--|--|
| JC1RDU-5                                 | PNP or NPN DC Reed, 5 meter cable           |  |  |  |
| JC1RDU-K                                 | PNP or NPN DC Reed, Quick Connect           |  |  |  |
| JC1ADU-K                                 | AC Reed, Quick Connect (M12)                |  |  |  |
| JC1HDP-5                                 | PNP (Source), Radial Sensing, 5 meter cable |  |  |  |
| JC1HDP-K                                 | PNP (Source), Radial Sensing, Quick Connect |  |  |  |
| JC1HDN-5                                 | NPN (Sink), Radial Sensing, 5 meter cable   |  |  |  |
| JC1HDN-K                                 | NPN (Sink), Radial Sensing, Quick Connect   |  |  |  |
| NOTE O States on all heart and accounted |                                             |  |  |  |

**NOTE:** Switches must be ordered separately.

#### **CORDSETS FOR SERIES JC1xDx SWITCHES**

| PART NO.    | DESCRIPTION                                          |  |  |  |  |
|-------------|------------------------------------------------------|--|--|--|--|
| 63549-02    | M8, 3 pin, Straight Female Connector, 2 meter cable  |  |  |  |  |
| 63549-05    | M8, 3 pin, Straight Female Connector, 5 meter cable  |  |  |  |  |
| 81284-1-010 | M12. 4 pin. Straight Female Connector, 2 meter cable |  |  |  |  |

NOTE: Cordsets are ordered separately.

# SERIES JC1ST TWO POSITION TEACHABLE MAGNETIC SWITCHES

| PART NO. | O. DESCRIPTION                                      |  |  |  |
|----------|-----------------------------------------------------|--|--|--|
| JC1STP-2 | PNP (Source), Solid State, 12-30 VDC, 2 meter cable |  |  |  |
| JC1STP-K | PNP (Source), Solid State, 12-30 VDC, Quick Connect |  |  |  |

**NOTE:** Switches must be ordered separately.

#### **CORDSET FOR SERIES JC1ST SWITCHES**

| PART NO.    | DESCRIPTION                                         |  |  |  |
|-------------|-----------------------------------------------------|--|--|--|
| 81284-1-001 | M8, 4 pin, Straight Female Connector, 5 meter cable |  |  |  |

**NOTE:** Cordsets are ordered separately.

#### SWITCH MOUNTING BRACKET

| PART NO. | DESCRIPTION                         |  |
|----------|-------------------------------------|--|
| 92101    | Mounts Series JC1 Switch to Tie Rod |  |

**NOTE:** Brackets are ordered separately.



| SPECIFICATIONS                                       | SERIES AV2             | SERIES HV2                     | SERIES A2                      |  |
|------------------------------------------------------|------------------------|--------------------------------|--------------------------------|--|
| OPERATING PRESSURE 20 to 150 psi air                 |                        | 40 to 1500 psi hyd*            | 20 to 150 psi air              |  |
| OPERATING TEMPERATURE -20° to +180°F [-29° to +82°C] |                        | -20° to +180°F [-29° to +82°C] | -20° to +180°F [-29° to +82°C] |  |
| STROKE TOLERANCE ±0.032                              |                        | ±0.032                         | ±0.032                         |  |
| LUBRICATION                                          | Permanently lubricated | _                              | Permanently lubricated         |  |
| MAINTENANCE                                          | Field repairable       | Field repairable               | Field repairable               |  |

<sup>\*</sup>Hydraulic rating is based on non-shock hydraulic service.

#### **CYLINDER FORCE TABLE**

| SERIES                              | CYLINDER<br>BORE | ROD<br>DIAMETER | ROD<br>DIRECTION | EFFECTIVE<br>AREA FORCE<br>Ib/psi | AIR CONSUMPTION at<br>80 psi<br>CUBIC ft/in OF STROKE* | DISPLACEMENT<br>gal/in<br>OF STROKE* |  |  |
|-------------------------------------|------------------|-----------------|------------------|-----------------------------------|--------------------------------------------------------|--------------------------------------|--|--|
|                                     | 3/4              | 1/4             | EXTEND           | 0.442                             | 0.0016                                                 | 0.0019                               |  |  |
|                                     | 3/4              | 1/4             | RETRACT          | 0.393                             | 0.0014                                                 | 0.0017                               |  |  |
| 41.70                               | 1                | 5/16            | EXTEND           | 0.785                             | 0.0029                                                 | 0.0034                               |  |  |
| AV2<br>HV2                          |                  |                 | RETRACT          | 0.709                             | 0.0026                                                 | 0.0031                               |  |  |
| A2                                  |                  | 3/8             | EXTEND           | 0.994                             | 0.0037                                                 | 0.0043                               |  |  |
| \rac{\rac{\rac{\rac{\rac{\rac{\rac{ |                  |                 | RETRACT          | 0.883                             | 0.0032                                                 | 0.0038                               |  |  |
|                                     |                  | 1/2             | EXTEND           | 1.485                             | 0.0055                                                 | 0.0064                               |  |  |
|                                     |                  |                 | RETRACT          | 1.289                             | 0.0048                                                 | 0.0056                               |  |  |

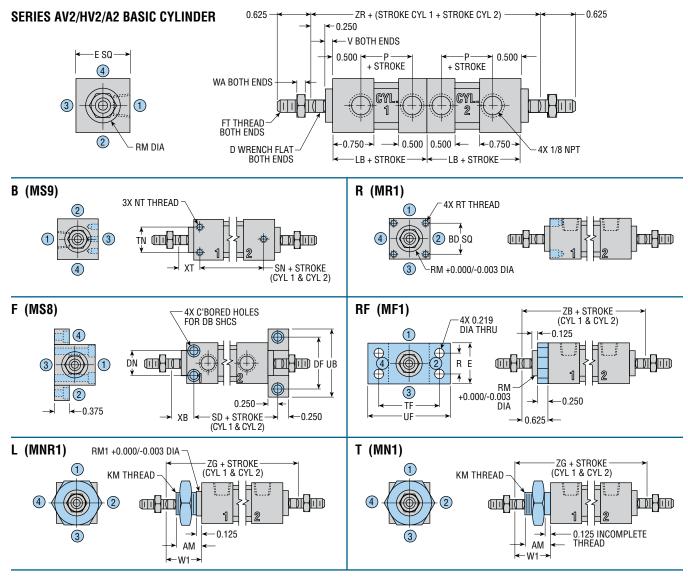
<sup>\*</sup>Value per cylinder (Cyl 1 or Cyl 2). Total = 2X value.

#### **MAXIMUM ALLOWABLE EXTEND STROKE**

| SERIES                           | ROD      |     | CYLINDER FORCE (Ib) |     |      |      |      |      |      |
|----------------------------------|----------|-----|---------------------|-----|------|------|------|------|------|
| SENIES                           | DIAMETER | 100 | 200                 | 500 | 1000 | 1500 | 2000 | 3000 | 5000 |
| 0/4" 1" 1 1/0"                   | 1/4      | 12" | 9"                  | 6"  | 4"   | 3"   | _    | _    | _    |
| 3/4", 1", 1-1/8"<br>AV2. HV2. A2 | 5/16     | 18" | 13"                 | 8"  | 6"   | 5"   | _    | _    | _    |
| AVZ, NVZ, AZ                     | 3/8      | 26" | 18"                 | 12" | 9"   | 7"   | _    | _    | _    |
| 1-3/8" AV2, HV2                  | 1/2      | 48" | 34"                 | 21" | 15"  | 12"  | _    | _    | _    |

| SERIES | CYLINDER | R UNIT WEIGHTS (Ib) |                           |  |  |  |  |
|--------|----------|---------------------|---------------------------|--|--|--|--|
| SENIES | BORE     | ZERO STROKE         | ADDER PER INCH OF STROKE* |  |  |  |  |
|        | 3/4      | 0.84                | 0.04                      |  |  |  |  |
| AV2    | 1        | 1.74                | 0.07                      |  |  |  |  |
| PLAIN  | 1-1/8    | 1.90                | 0.10                      |  |  |  |  |
|        | 1-3/8    | 5.12                | 0.12                      |  |  |  |  |

<sup>\*</sup>Total Stroke = Stroke Cylinder 1 + Stroke Cylinder 2


| CYLINDER FORCE CALCULATIONS               |                       |  |  |  |
|-------------------------------------------|-----------------------|--|--|--|
|                                           | Imperial<br>F = P x A |  |  |  |
| F = Cylinder Force                        | lbs                   |  |  |  |
| P = Operating Pressure                    | psi                   |  |  |  |
| A = Effective Area<br>(Extend or Retract) | in²                   |  |  |  |

### **Application & Sizing Assistance**

Use PHD's free online Product Sizing and Application at www.phdinc.com/apps/sizing



# DIMENSIONS: Series AV2, HV2, A2 Cylinders - 3/4", 1", 1-1/8" Bore



All standard rod ends have four wrench flats (two wrench flats with "I" option).

#### **DIMENSIONS COMMON TO ALL SERIES**

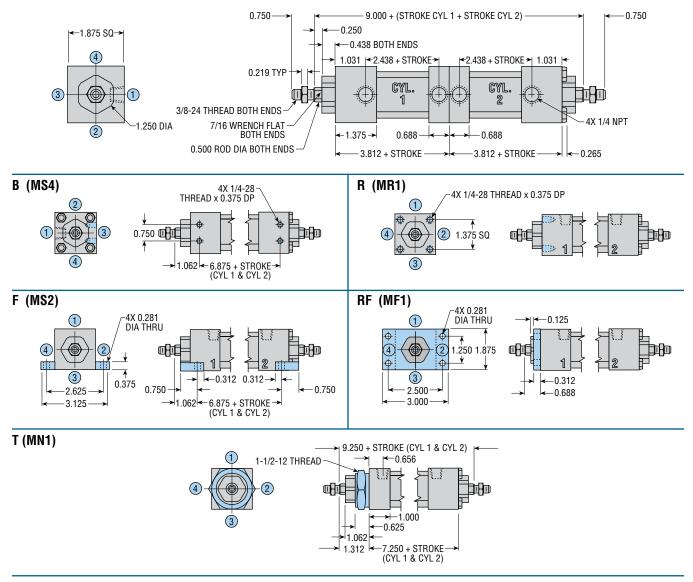
| BORE  |               | LETTER DIMENSION |     |       |       |       |         |                 |       |       |                 |       |       |       |       |       |
|-------|---------------|------------------|-----|-------|-------|-------|---------|-----------------|-------|-------|-----------------|-------|-------|-------|-------|-------|
| SIZE  | ZE BD D DB DF |                  |     |       |       | E     | FT      | NT              | R     | RM    | RT              | TF    | TN    | UB    | UF    | WA    |
| 3/4   | 0.750         | 3/16             | #8  | 1.375 | 0.625 | 1.000 | 1/4-28  | 8-32 x 0.18 DP  | 0.500 | 0.625 | 8-32 x 0.25 DP  | 1.500 | 0.625 | 1.750 | 2.000 | 0.156 |
| 1     | 1.000         | 1/4              | #10 | 1.750 | 0.875 | 1.375 | 5/16-24 | 10-32 x 0.25 DP | 0.875 | 0.750 | 8-32 x 0.25 DP  | 1.875 | 0.875 | 2.125 | 2.375 | 0.188 |
| 1-1/8 | 1.125         | 5/16             | #10 | 1.875 | 1.000 | 1.500 | 3/8-24  | 10-32 x 0.25 DP | 1.000 | 0.750 | 10-32 x 0.25 DP | 2.000 | 1.000 | 2.250 | 2.500 | 0.219 |

|   | SERIES A2 CYLINDERS |                  |        |       |       |       |       |       |       |       |       |       |       |       |       |
|---|---------------------|------------------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| E | ORE                 | LETTER DIMENSION |        |       |       |       |       |       |       |       |       |       |       |       |       |
| 1 | SIZE                | AM               | KM     | LB    | Р     | RM1   | SD    | SN    | V     | W1    | XB    | XT    | ZB    | ZG    | ZR    |
| Ī | 3/4                 | 0.625            | 5/8-18 | 1.750 | 1.000 | 0.687 | 3.562 | 3.062 | 0.125 | 0.875 | 0.562 | 0.562 | 4.500 | 4.750 | 4.250 |
|   | 1                   | 0.625            | 3/4-16 | 1.750 | 1.000 | 0.812 | 3.500 | 3.000 | 0.125 | 0.875 | 0.625 | 0.625 | 4.500 | 4.750 | 4.250 |
|   | 1-1/8               | 0.625            | 3/4-16 | 1.750 | 1.000 | 0.812 | 3.500 | 3.000 | 0.125 | 0.875 | 0.625 | 0.625 | 4.500 | 4.750 | 4.250 |

|   | SERIES HVZ CYLINDERS |                     |        |       |       |       |       |       |       |       |       |       |       |       |       |
|---|----------------------|---------------------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| В | ORE                  | RE LETTER DIMENSION |        |       |       |       |       |       |       |       |       |       |       |       |       |
| 5 | SIZE                 | AM                  | KM     | LB    | P     | RM1   | SD    | SN    | V     | W1    | XB    | XT    | ZB    | ZG    | ZR    |
|   | 3/4                  | 0.625               | 5/8-18 | 2.250 | 1.500 | 0.687 | 4.562 | 4.062 | 0.375 | 0.875 | 0.812 | 0.812 | 5.750 | 6.000 | 5.750 |
|   | 1                    | 0.625               | 3/4-16 | 2.250 | 1.500 | 0.812 | 4.500 | 4.000 | 0.375 | 0.875 | 0.875 | 0.875 | 5.750 | 6.000 | 5.750 |
| 1 | -1/8                 | 0.875               | 1-14   | 2.250 | 1.500 | 1.062 | 4.500 | 4.000 | 0.375 | 1.125 | 0.875 | 0.875 | 5.750 | 6.250 | 5.750 |

|   | SERIES AV2 CYLINDERS |                      |        |       |       |       |       |       |       |       |       |       |       |       |       |
|---|----------------------|----------------------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| E | BORE                 | IRE LETTER DIMENSION |        |       |       |       |       |       |       |       |       |       |       |       |       |
|   | SIZE                 | AM                   | KM     | LB    | Р     | RM1   | SD    | SN    | V     | W1    | XB    | XT    | ZB    | ZG    | ZR    |
|   | 3/4                  | 0.625                | 5/8-18 | 2.250 | 1.500 | 0.687 | 4.562 | 4.062 | 0.125 | 0.875 | 0.562 | 0.562 | 5.500 | 5.750 | 5.250 |
|   | 1                    | 0.625                | 3/4-16 | 2.250 | 1.500 | 0.812 | 4.500 | 4.000 | 0.125 | 0.875 | 0.625 | 0.625 | 5.500 | 5.750 | 5.250 |
| ŀ | 1-1/8                | 0.875                | 1-14   | 2.250 | 1.500 | 1.062 | 4.500 | 4.000 | 0.125 | 1.125 | 0.625 | 0.625 | 5.500 | 6.000 | 5.250 |

PORT POSITIONS: INDICATED BY CIRCLED NUMBERS
CUSHIONS: ADD 1.000 in TO ALL (+ STROKE) DIMENSIONS OF CYLINDER 1 AND
CYLINDER 2 (2" TOTAL TO OVERALL)


SHOCK PADS: ADD 0.500 in TO ALL (+ STROKE) DIMENSIONS OF CYLINDER 1 AND CYLINDER 2 (1" TOTAL TO OVERALL)

All dimensions are reference only unless specifically toleranced.



### **DIMENSIONS:** Series AV2, HV2 Cylinders - 1-3/8" Bore

#### **SERIES AV2/HV2 BASIC CYLINDER**



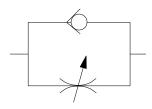
All standard rod ends have four wrench flats (two wrench flats with "I" option).

PORT POSITIONS: INDICATED BY CIRCLED NUMBERS

**CUSHIONS:** CYLINDER LENGTH IS NOT AFFECTED BY ADDITION OF CUSHIONS

SHOCK PADS: ADD 0.500 in TO ALL (+ STROKE) DIMENSIONS OF CYLINDER 1 AND CYLINDER 2 (1" TOTAL TO OVERALL)






#### PORT CONTROL®

The exclusive PHD Port Control®, based on the "meter-out" principle, features an adjustable needle and a separate ball check. Both are built into the cylinder end cap and are used to control the speed of the cylinder over its entire stroke.

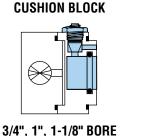
The self-locking needle has micrometer threads and is adjustable under pressure. It determines the orifice size which controls the exhaust volume. The separate ball check is closed while fluid

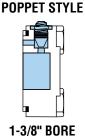
is exhausting from the cylinder, but opens to permit full flow of incoming fluids. The PHD Port Control® provides the optimum in speed control for small bore cylinders. It saves space and eliminates the cost of installation and fittings for external flow control valves.





#### ADJUSTABLE CUSHION

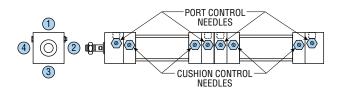

PHD Cushions are designed for smooth deceleration at the end of stroke. When the cushion is activated the remaining volume in the cylinder must exhaust past an adjustable needle which controls the amount of deceleration.


See dimension pages for dimensional information.

3/4", 1", 1-1/8" Series A2, A2V, H2V = Cushion Block 1-3/8" Series A2V, H2V = Poppet Style

Effective cushion length 1/2"

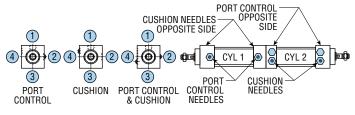
Not warranted on Series HV2 3/4", 1", 1-1/8" units






#### STANDARD PORT CONTROL® & CUSHION NEEDLE POSITIONS

(3/4", 1", 1-1/8" Bore Series A2, AV2, and HV2 Cylinders)

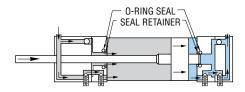

Port Control® and cushion needles are located in position 2 on standard cylinders. They may be located at position 4 when specified on all Series A2, AV2, and HV2. Consult PHD for special Port Control® or cushion needle positions.



### STANDARD PORT CONTROL® & CUSHION NEEDLE POSITIONS

(1-3/8" Bore Series AV and HV Cylinders)

Port Control® and cushion needles are located on opposite sides adjacent to port. Please consult distributor or PHD to check availability of special Port Control® or cushion needle positions.

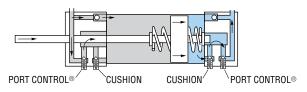



### PORT CONTROL® AND ADJUSTABLE CUSHION COMBINATION

(3/4", 1", 1-1/8" Bore Series A2, AV2, and HV2 Cylinders)

Cushion and Port Control® combination arranged in series provides a compact efficient control system for maximum space weight and cost savings. The cushion is activated when the piston extension enters a seal in the cushion block. The remaining volume in the cylinder exhausts past an adjustable needle. A check seal in the adjusting needle is closed during deceleration, but opens to permit full flow for immediate reversing. The cushion seal in the block is an o-ring for air units.

#### **CUSHION BLOCK STYLE**




#### PORT CONTROL® AND ADJUSTABLE CUSHION COMBINATION

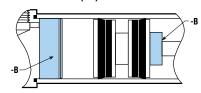
(1-3/8" Bore Series AV2 and HV2 Cylinders)

The cushion and Port Control® combination is also available on the 1-3/8" Bore. This cushion is activated when a seal, which is traveling with the piston, seals against the cylinder end cap. This causes the remaining volume in the cylinder to exhaust past an adjustable needle which controls the amount of deceleration. The spring, which extends the seal from the piston, permits the seal to act as a check valve to allow full flow back into the cylinder for immediate reversing. The cushion seal for air units is made of urethane while seals for oil units are close tolerance metal.

#### **POPPET STYLE**





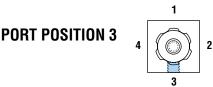



#### **SHOCK PADS**

Polyurethane pads for absorption of shock and noise (not available on hydraulic units). Reducing shock permits higher piston velocities for shorter cycle times. Reducing noise levels provides improved environment for increased productivity. Eliminates metal to metal contact between piston and end caps.

#### Available together with all options EXCEPT:

Same end as Cushion (-D)




#### PORT POSITIONS

Port position 1 is standard on all cylinders.

#### PORT POSITION 1 (STANDARD)







**PORT POSITION 2** 





**PORT POSITION 4** 





# MAGNETIC PISTON FOR SERIES JC1 RADIAL SENSING SWITCHES

PHD Cylinders may be equipped with a magnetic band (specify -E) on the piston which activates externally mounted radial sensing switches. These switches allow the interfacing of the Tom Thumb<sup>®</sup> air or hydraulic cylinder to various logic systems. This option is for use with the following switches.

#### **SERIES JC1xDx MAGNETIC SWITCHES**

| PART NO. | DESCRIPTION                                 |
|----------|---------------------------------------------|
| JC1HDP-5 | PNP (Source), Radial Sensing, 5 meter cable |
| JC1HDP-K | PNP (Source), Radial Sensing, Quick Connect |
| JC1HDN-5 | NPN (Sink), Radial Sensing, 5 meter cable   |
| JC1HDN-K | NPN (Sink), Radial Sensing, Quick Connect   |

NOTE: Switches must be ordered separately.

#### **CORDSETS FOR SERIES JC1xDx SWITCHES**

| PART NO.    | DESCRIPTION                                          |
|-------------|------------------------------------------------------|
| 63549-02    | M8, 3 pin, Straight Female Connector, 2 meter cable  |
| 63549-05    | M8, 3 pin, Straight Female Connector, 5 meter cable  |
| 81284-1-010 | M12, 4 pin, Straight Female Connector, 2 meter cable |

NOTE: Cordsets are ordered separately.

# M

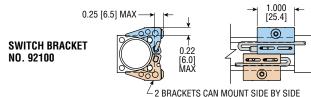
# MAGNETIC PISTON FOR SERIES JC1 REED & TEACHABLE SWITCHES

The PHD Magnetic Reed Switches may be used in situations where the radial sensing switches are not applicable. As with the radial sensing switches, a magnetic band (specify -M) on the piston activates the externally mounted PHD Reed Switches. The Reed Switches may be used to signal a programmable controller, sequencer, relay, or in some cases, a valve solenoid. This option is for use with the following switches.

The Teachable Switch provides the ability to identify two separately programmable positions with a single switch. Programmable capability means no "fine tuning." With switch properly aligned, just place actuator in desired positions and program. Solid-state sensing technology provides a highly reliable switch.

See Series JC1 Switches at phdinc.com for more information.

#### **SERIES JC1ST REED SWITCHES**


| PART NO. | DESCRIPTION                       |
|----------|-----------------------------------|
| JC1RDU-5 | PNP or NPN DC Reed, 5 meter cable |
| JC1RDU-K | PNP or NPN DC Reed, Quick Connect |
| JC1ADU-K | AC Reed, Quick Connect (M12)      |

NOTE: Switches must be ordered separately.

#### **SERIES JC1ST TEACHABLE SWITCHES**

| PART NO. | DESCRIPTION                                         |  |  |  |  |  |  |  |  |
|----------|-----------------------------------------------------|--|--|--|--|--|--|--|--|
| JC1STP-2 | PNP (Source), Solid State, 12-30 VDC, 2 meter cable |  |  |  |  |  |  |  |  |
| JC1STP-K | PNP (Source), Solid State, 12-30 VDC, Quick Connect |  |  |  |  |  |  |  |  |

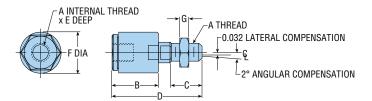
NOTE: Switches must be ordered separately.





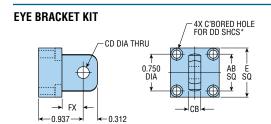
#### **FLUOROELASTOMER SEALS**

Fluoroelastomer seals are available to achieve seal compatibility with certain fluids. Seal compatibility should be checked with the


fluid manufacturer for proper application. Consult PHD for high temperature use.

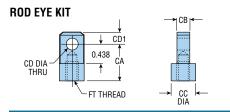


#### **SELF-ALIGNING PISTON ROD COUPLERS**


Rod Couplers eliminate expensive precision machining for mounting fixed or rigid cylinder on guide or slide applications.

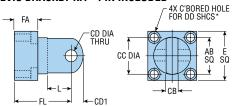
Cylinder efficiency is increased by eliminating friction caused by misalignment. Couplers compensate for 2° angular error and 1/32" lateral misalignment on push and pull stroke.




| MODEL |         |       | LETTER | R DIMEN | ISION |       |       |
|-------|---------|-------|--------|---------|-------|-------|-------|
| NO.   | Α       | В     | C      | D       | E     | F     | G     |
| 250   | 1/4-28  | 1.000 | 0.625  | 1.875   | 0.500 | 0.875 | 0.156 |
| 312   | 5/16-24 | 1.000 | 0.625  | 1.875   | 0.500 | 0.875 | 0.187 |
| 375   | 3/8-24  | 1.000 | 0.625  | 1.875   | 0.500 | 0.875 | 0.219 |
| 437   | 7/16-20 | 1.125 | 0.650  | 2.187   | 0.500 | 1.000 | 0.250 |

To order, specify the model number.

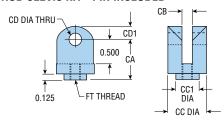



| BORE  | CYLINDER     | PART    |       | LE.   | TTER DI | MENSI | ON    |       |
|-------|--------------|---------|-------|-------|---------|-------|-------|-------|
| SIZE  | SERIES       | NO.     | AB    | CB    | CD      | DD*   | E     | FX    |
| 3/4   | A2, AV2, HV2 | 1077-01 | 0.750 | 0.248 | 0.250   | #6    | 1.000 | 0.577 |
| 1 &   | A2           | 1077-02 | 1.000 | 0.373 | 0.250   | #10   | 1.375 | 0.437 |
| 1-1/8 | AV2, HV2     | 1077-03 | 1.000 | 0.373 | 0.375   | #10   | 1.375 | 0.437 |

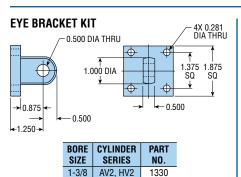
\*For 3/4 bore thru hole only.

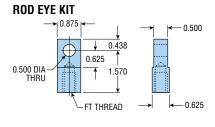


| BORE  | CYLINDER | PART    |       |       | LE    | TTER DI | MENSIO | N                  |
|-------|----------|---------|-------|-------|-------|---------|--------|--------------------|
| SIZE  | SERIES   | NO.     | CA    | CB    | CC    | CD      | CD1    | FT                 |
| 3/4   | A2, AV2  | 1075-01 | 0.750 | 0.248 | 0.500 | 0.250   | 0.250  | 1/4-28 x 0.375 DP  |
| 4     | A2       | 1075-02 | 0.875 | 0.373 | 0.750 | 0.250   | 0.375  | 5/16-24 x 0.375 DP |
|       | AV2      | 1075-04 | 0.875 | 0.373 | 0.750 | 0.375   | 0.375  | 5/16-24 x 0.375 DP |
| 1-1/8 | A2       | 1075-03 | 0.875 | 0.373 | 0.750 | 0.250   | 0.375  | 3/8-24 x 0.312 DP  |
| 1-1/0 | AV2      | 1075-05 | 0.875 | 0.373 | 0.750 | 0.375   | 0.375  | 3/8-24 x 0.312 DP  |

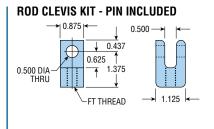

#### **CLEVIS BRACKET KIT - PIN INCLUDED**




| В | ORE  | CYLINDER | PART  |       | LETTER DIMENSION |       |       |       |     |       |       |       |       |  |  |  |
|---|------|----------|-------|-------|------------------|-------|-------|-------|-----|-------|-------|-------|-------|--|--|--|
| : | SIZE | SERIES   | NO.   | AB    | CB               | CC    | CD    | CD1   | DD* | E     | FA    | FL    | L     |  |  |  |
|   | 3/4  | A2, AV2  | 12901 | 0.750 | 0.254            | 0.750 | 0.250 | 0.250 | #6  | 1.000 | 0.360 | 1.187 | 0.500 |  |  |  |
|   | 1 &  | A2       | 12902 | 1.000 | 0.379            | 0.875 | 0.250 | 0.375 | #10 | 1.375 | 0.500 | 1.250 | 0.531 |  |  |  |
| 1 | -1/8 | AV2      | 12903 | 1.000 | 0.379            | 0.875 | 0.375 | 0.375 | #10 | 1.375 | 0.500 | 1.250 | 0.531 |  |  |  |


<sup>\*</sup>For 3/4 bore thru hole only.

#### **ROD CLEVIS KIT - PIN INCLUDED**




| BORE  | CYLINDER | PART  | LETTER DIMENSION |       |       |       |       |       |                 |
|-------|----------|-------|------------------|-------|-------|-------|-------|-------|-----------------|
| SIZE  | SERIES   | NO.   | CA               | CB    | CC    | CC1   | CD    | CD1   | FT              |
| 3/4   | A2, AV2  | 12904 | 0.812            | 0.254 | 0.750 | 0.437 | 0.250 | 0.250 | 1/4-28 TO SLOT  |
| -1    | A2       | 12905 | 0.875            | 0.379 | 0.875 | 0.562 | 0.250 | 0.375 | 5/16-24 TO SLOT |
|       | AV2      | 12906 | 0.875            | 0.379 | 0.875 | 0.562 | 0.375 | 0.375 | 5/16-24 TO SLOT |
| 1-1/8 | A2       | 12907 | 0.875            | 0.379 | 0.875 | 0.562 | 0.250 | 0.375 | 3/8-24 TO SLOT  |
| 1-1/0 | AV2      | 12908 | 0.875            | 0.379 | 0.875 | 0.562 | 0.375 | 0.375 | 3/8-24 TO SLOT  |





| BORE  | CYLINDER | PART    | LETTER DIMENSION  |  |
|-------|----------|---------|-------------------|--|
| SIZE  | SERIES   | NO.     | FT                |  |
| 1-3/8 | AV2, HV2 | 1375-01 | 3/8-24 x 0.750 DP |  |



| BORE  | CYLINDER | PART  | LETTER DIMENSION |
|-------|----------|-------|------------------|
| SIZE  | SERIES   | NO.   | FT               |
| 1-3/8 | AV2, HV2 | 12909 | 3/8-24 TO SLOT   |

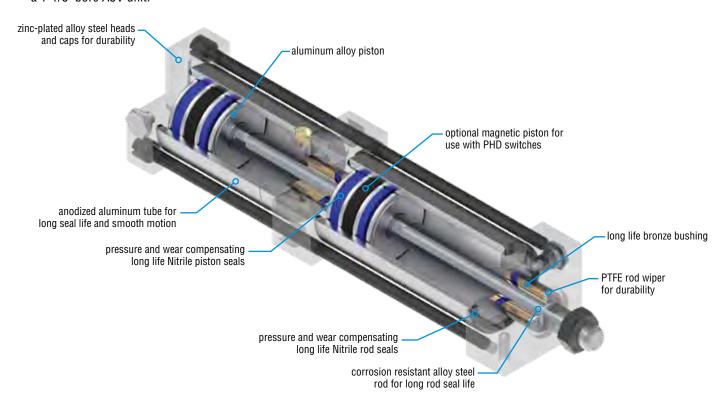
All dimensions are reference only unless specifically toleranced.



# **A3V, H3V, A3**

# tom thumb®

# 3/4", 1", 1-1/8", 1-3/8" Bore


#### **Major Benefits**

- · Three linear positions from piston rod
- · Long life design for low maintenance
- · NFPA repairable for extended life providing long term savings
- Wide range of options for easy application and reduced design time
- · Wide range of mounting styles for easy installation
- · Simple three position operation



#### **SERIES A3V**

Cutaway depicts a 1-1/8" bore A3V unit.





#### TO ORDER SPECIFY:

Series, Type, Mounting Style, Bore Size, Cylinder 1 Stroke, Cylinder 2 Stroke, and Options.

CAUTION: HYDRAULIC THREE POSITION
CYLINDER (H3V) MUST BE VALVED PROPERLY
TO PREVENT BLOCKING OF FLOW FROM THE
CENTER PORT WHEN PRESSURIZING THE
REAR (CAP) PORT. FAILURE TO DO SO MAY
RESULT IN AN INTENSIFICATION OF
PRESSURE IN CYLINDER NUMBER 1 CAUSING
TIEROD FAILURE.

### **CYLINDER SERIES**

AV - 150 psi Air HV - 1500 psi Hyd. \*A - 150 psi Air

> \*Not available in 1-3/8" bore

#### **BORE SIZE** 3/4" BORE 1/4" Rod Dia. 1/4-28 Thread

1" BORE 5/16" Rod Dia. 5/16-24 Thread

1-1/8" BORE 3/8" Rod Dia. 3/8-24 Thread

1-3/8" BORE 1/2" Rod Dia. 3/8-24 Thread

#### STANDARD **STROKE CYLINDER 1** (TOTAL STROKE)

POSITION 3

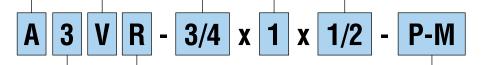
**FULL EXTEND** 

3/4" BORE SIZE 1/4" to 6" 1" and 1-1/8" BORE SIZES 1/4" to 9" in 1/4" increments

> 1-3/8" BORE SIZE 1/2" to 12" in 1/2" increments

For longer strokes, consult PHD.

#### STANDARD **STROKE CYLINDER 2** (FROM RETRACT TO MID POSITION)


POSITION 1 FULL RETRACT

POSITION 2 MID-POSITION EXTEND <

> 3/4" BORE SIZE 1/4" to 6" 1" and 1-1/8" BORE SIZES 1/4" to 9" in 1/4" increments

> > 1-3/8" BORE SIZE 1/2" to 12" in 1/2" increments

For longer strokes, consult PHD.



#### **TYPE**

3 - Three Position Cylinder

#### **MOUNTING STYLE**

- F Foot Mount, c'bored through holes
- B Bottom Mount, tapped holes in head and cap
- R Rod Mount, tapped holes on front face of head
- T Thread Mount, threaded snout on head (shipped with mounting nut)
- RF Rod End Flange
- CF Cap End Flange
- \*L Pilot Mount, threaded snout and pilot diameter on head (shipped with mounting nut)
- \*P Pivot Mount, pivot on cap \*K Clevis Mount, clevis on cap
- - \*Available on 3/4", 1", and 1-1/8" bore only \*\*Available on 1-3/8" bore only

#### OPTIONS

- B Shock Pads on full extension and retraction only (not available on Series HV)
- ·Cushion on full extension and retraction only (Cushions available, but not warranted, on Series HV 3/4", 1", or 1-1/8" sizes)
- E-Magnetic Pistons on both cylinders for Series JC1 radial sensing switches (not available on Series A)
  -Magnetic Pistons on both cylinders for Series JC1
- reed and teachable switches (not available on Series A)
- -Port Controls® on all heads and cap, full extension and retraction only, not on mid-position extension
- V Fluoroelastomer Seals



Options may affect unit length. See dimensional pages and option information details.

#### **SERIES JC1xDx MAGNETIC SWITCHES**

| PART NO. | DESCRIPTION                                 |
|----------|---------------------------------------------|
| JC1RDU-5 | PNP or NPN DC Reed, 5 meter cable           |
| JC1RDU-K | PNP or NPN DC Reed, Quick Connect           |
| JC1ADU-K | AC Reed, Quick Connect (M12)                |
| JC1HDP-5 | PNP (Source), Radial Sensing, 5 meter cable |
| JC1HDP-K | PNP (Source), Radial Sensing, Quick Connect |
| JC1HDN-5 | NPN (Sink), Radial Sensing, 5 meter cable   |
| JC1HDN-K | NPN (Sink), Radial Sensing, Quick Connect   |

**NOTE:** Switches must be ordered separately.

#### SERIES JC1ST TWO POSITION TEACHABLE MAGNETIC SWITCHES

| PART NO. | DESCRIPTION                                         |  |  |  |  |  |
|----------|-----------------------------------------------------|--|--|--|--|--|
| JC1STP-2 | PNP (Source), Solid State, 12-30 VDC, 2 meter cable |  |  |  |  |  |
| JC1STP-K | PNP (Source), Solid State, 12-30 VDC, Quick Connect |  |  |  |  |  |

**NOTE:** Switches must be ordered separately.

#### CORDSETS FOR SERIES JC1xDx SWITCHES

| PART NO.    | DESCRIPTION                                          |
|-------------|------------------------------------------------------|
| 63549-02    | M8, 3 pin, Straight Female Connector, 2 meter cable  |
| 63549-05    | M8, 3 pin, Straight Female Connector, 5 meter cable  |
| 81284-1-010 | M12, 4 pin, Straight Female Connector, 2 meter cable |

**NOTE:** Cordsets are ordered separately.

### CORDSET FOR SERIES JC1ST SWITCHES

| PART NO.    | DESCRIPTION                                         |
|-------------|-----------------------------------------------------|
| 81284-1-001 | M8, 4 pin, Straight Female Connector, 5 meter cable |

**NOTE:** Cordsets are ordered separately.

#### SWITCH MOUNTING BRACKET

| • · · · · · · · · · · · · · · · · · · · |                                     |  |  |  |
|-----------------------------------------|-------------------------------------|--|--|--|
| PART NO. DESCRIPTION                    |                                     |  |  |  |
| 92101                                   | Mounts Series JC1 Switch to Tie Rod |  |  |  |

**NOTE:** Brackets are ordered separately.



| SPECIFICATIONS        | SERIES A3V                     | SERIES H3V                     | SERIES A3                      |
|-----------------------|--------------------------------|--------------------------------|--------------------------------|
| OPERATING PRESSURE    | 20 to 150 psi air              | 40 to 1500 psi hyd*            | 20 to 150 psi air              |
| OPERATING TEMPERATURE | -20° to +180°F [-29° to +82°C] | -20° to +180°F [-29° to +82°C] | -20° to +180°F [-29° to +82°C] |
| STROKE TOLERANCE      | ±0.032                         | ±0.032                         | ±0.032                         |
| LUBRICATION           | Permanently lubricated         | _                              | Permanently lubricated         |
| MAINTENANCE           | Field repairable               | Field repairable               | Field repairable               |

<sup>\*</sup>Hydraulic rating is based on non-shock hydraulic service.

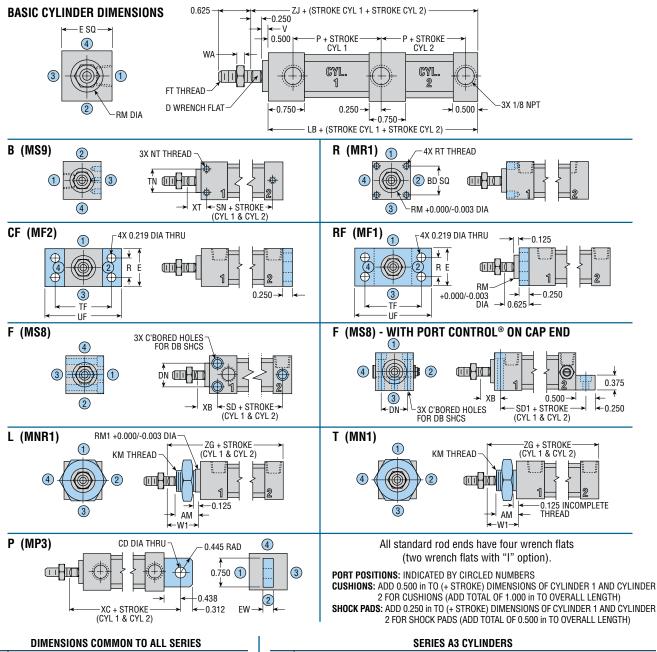
#### **CYLINDER FORCE TABLE**

| _ |        |                  |                 |                  |                                   |                                                        |                                      |  |  |
|---|--------|------------------|-----------------|------------------|-----------------------------------|--------------------------------------------------------|--------------------------------------|--|--|
|   | SERIES | CYLINDER<br>Bore | ROD<br>DIAMETER | ROD<br>DIRECTION | EFFECTIVE<br>AREA FORCE<br>Ib/psi | AIR CONSUMPTION at<br>80 psi<br>CUBIC ft/in OF STROKE* | DISPLACEMENT<br>gal/in<br>OF STROKE* |  |  |
|   |        | 3/4              | 1/4             | EXTEND           | 0.442                             | 0.0016                                                 | 0.0019                               |  |  |
|   |        | 3/4              | 1/4             | RETRACT          | 0.393                             | 0.0014                                                 | 0.0017                               |  |  |
|   | 40)/   | 3V               | 5/16            | EXTEND           | 0.785                             | 0.0029                                                 | 0.0034                               |  |  |
|   | A3V    |                  |                 | RETRACT          | 0.709                             | 0.0026                                                 | 0.0031                               |  |  |
|   | A3     |                  | 3/8             | EXTEND           | 0.994                             | 0.0037                                                 | 0.0043                               |  |  |
|   | AS     | 1-1/0            |                 | RETRACT          | 0.883                             | 0.0032                                                 | 0.0038                               |  |  |
|   |        | 1-3/8            | 1/2             | EXTEND           | 1.485                             | 0.0055                                                 | 0.0064                               |  |  |
|   |        | 1-3/0            |                 | RETRACT          | 1.289                             | 0.0048                                                 | 0.0056                               |  |  |

<sup>\*</sup>Value per cylinder (Cyl 1 or Cyl 2). Total = 2X value.

#### **MAXIMUM ALLOWABLE EXTEND STROKE**

| SERIES                           | ROD      | CYLINDER FORCE (Ib) |     |     |      |      |      |      |      |
|----------------------------------|----------|---------------------|-----|-----|------|------|------|------|------|
| SERIES                           | DIAMETER | 100                 | 200 | 500 | 1000 | 1500 | 2000 | 3000 | 5000 |
| 0/4" 4" 4 4/0"                   | 1/4      | 12"                 | 9"  | 6"  | 4"   | 3"   | _    | _    | _    |
| 3/4", 1", 1-1/8"<br>A3V, H3V, A3 | 5/16     | 18"                 | 13" | 8"  | 6"   | 5"   | _    | _    | _    |
| ASV, HSV, AS                     | 3/8      | 26"                 | 18" | 12" | 9"   | 7"   | _    | _    | _    |
| 1-3/8" A3V, H3V                  | 1/2      | 48"                 | 34" | 21" | 15"  | 12"  | _    | _    | _    |


| SERIES | CYLINDER | UNIT WEIGHTS (Ib) |                           |  |  |  |
|--------|----------|-------------------|---------------------------|--|--|--|
| SENIES | BORE     | ZERO STROKE       | ADDER PER INCH OF STROKE* |  |  |  |
|        | 3/4      | 0.67              | 0.04                      |  |  |  |
| AVR    | 1        | 1.39              | 0.07                      |  |  |  |
| AVN    | 1-1/8    | 1.52              | 0.10                      |  |  |  |
|        | 1-3/8    | 4.12              | 0.12                      |  |  |  |

<sup>\*</sup>Total Stroke = Stroke Cylinder 1 (Total) + Stroke Cylinder 2 (3 Position Stroke)

| CYLINDER FORCE CALC                                                 | ULATIONS              |
|---------------------------------------------------------------------|-----------------------|
|                                                                     | Imperial<br>F = P x A |
| F = Cylinder Force                                                  | lbs                   |
| P = Operating Pressure<br>A = Effective Area<br>(Extend or Retract) | psi<br>in²            |



### DIMENSIONS: Series A3V, H3V, A3 Cylinders - 3/4", 1", 1-1/8" Bore



| BORE  |       |      |     |       | LETTE | R DIME | NSION |         |                 |
|-------|-------|------|-----|-------|-------|--------|-------|---------|-----------------|
| SIZE  | BD    | D    | DB  | DF    | DN    | E      | EW    | FT      | NT              |
| 3/4   | 0.750 | 3/16 | #8  | 1.375 | 0.625 | 1.000  | 0.250 | 1/4-28  | 8-32 x 0.18 DP  |
| 1     | 1.000 | 1/4  | #10 | 1.750 | 0.875 | 1.375  | 0.375 | 5/16-24 | 10-32 x 0.25 DP |
| 1-1/8 | 1.125 | 5/16 | #10 | 1.875 | 1.000 | 1.500  | 0.375 | 3/8-24  | 10-32 x 0.25 DP |

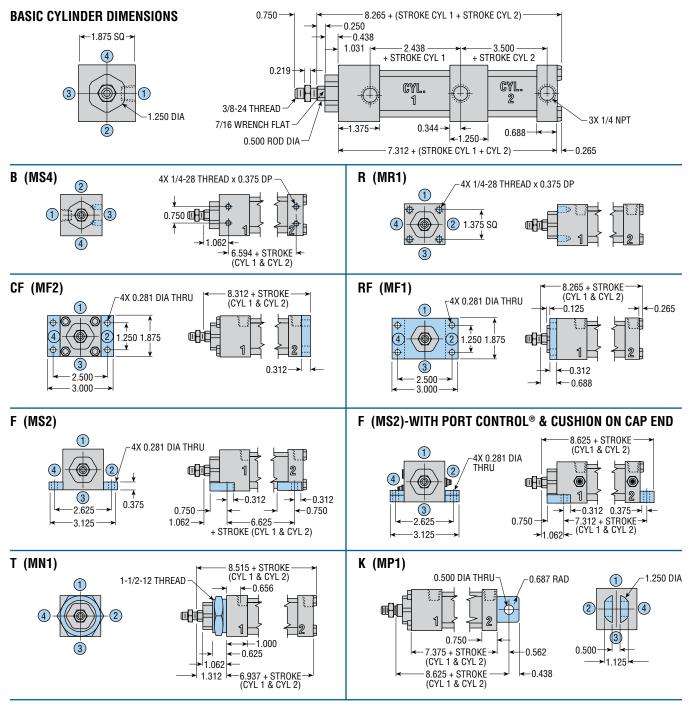
#### **DIMENSIONS COMMON TO ALL SERIES**

| BORE  |       |       | LETTER          | DIMEN | SION  |       |       |       |
|-------|-------|-------|-----------------|-------|-------|-------|-------|-------|
| SIZE  | R     | RM    | RT              | TF    | TN    | UB    | UF    | WA    |
| 3/4   | 0.500 | 0.625 | 8-32 x 0.25 DP  | 1.500 | 0.625 | 1.750 | 2.000 | 0.156 |
| 1     | 0.875 | 0.750 | 8-32 x 0.25 DP  | 1.875 | 0.875 | 2.125 | 2.375 | 0.188 |
| 1-1/8 | 1.000 | 0.750 | 10-32 x 0.25 DP | 2.000 | 1.000 | 2.250 | 2.500 | 0.219 |

| BORE  |       | LETTER DIMENSION |        |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
|-------|-------|------------------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| SIZE  | AM    | CD               | KM     | LB    | Р     | P1    | RM1   | SD    | SD1   | SN    | V     | W1    | XB    | XC    | XT    | ZG    | ZJ    |
| 3/4   | 0.625 | 0.250            | 5/8-18 | 3.312 | 1.000 | 1.562 | 0.687 | 2.875 | 3.375 | 2.875 | 0.125 | 0.875 | 0.562 | 4.125 | 0.562 | 4.187 | 3.687 |
| 1     | 0.625 | 0.250            | 3/4-16 | 3.312 | 1.000 | 1.562 | 0.812 | 2.812 | 3.312 | 2.812 | 0.125 | 0.875 | 0.625 | 4.125 | 0.625 | 4.187 | 3.687 |
| 1-1/8 | 0.625 | 0.250            | 3/4-16 | 3.312 | 1.000 | 1.562 | 0.812 | 2.812 | 3.312 | 2.812 | 0.125 | 0.875 | 0.625 | 4.125 | 0.625 | 4.187 | 3.687 |

#### **SERIES A3V CYLINDERS**

| BORE  |       |       |        |       |       |       | ı     | ETTER | DIME  | NSION |       |       |       |       |       |       |       |
|-------|-------|-------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| SIZE  | AM    | CD    | KM     | LB    | P     | P1    | RM1   | SD    | SD1   | SN    | V     | W1    | XB    | XC    | XT    | ZG    | ZJ    |
| 3/4   | 0.625 | 0.250 | 5/8-18 | 4.312 | 1.500 | 2.062 | 0.687 | 3.875 | 4.375 | 3.875 | 0.125 | 0.875 | 0.562 | 5.125 | 0.562 | 5.187 | 4.687 |
| 1     | 0.625 | 0.375 | 3/4-16 | 4.312 | 1.500 | 2.062 | 0.812 | 3.812 | 4.312 | 3.812 | 0.125 | 0.875 | 0.625 | 5.125 | 0.625 | 5.187 | 4.687 |
| 1-1/8 | 0.875 | 0.375 | 1-14   | 4.312 | 1.500 | 2.062 | 1.062 | 3.812 | 4.312 | 3.812 | 0.125 | 1.125 | 0.625 | 5.125 | 0.625 | 5.437 | 4.687 |


#### **SERIES H3V CYLINDERS**

| BORE  |       |       |        |       |       |       | L     | ETTER | DIME  | NSION |       |       |       |       |       |       |       |
|-------|-------|-------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| SIZE  | AM    | CD    | KM     | LB    | P     | P1    | RM1   | SD    | SD1   | SN    | V     | W1    | XB    | XC    | XT    | ZG    | ZJ    |
| 3/4   | 0.625 | 0.250 | 5/8-18 | 4.312 | 1.500 | 2.062 | 0.687 | 3.875 | 4.375 | 3.875 | 0.375 | 0.875 | 0.812 | 5.375 | 0.812 | 5.187 | 4.937 |
| 1     | 0.625 | 0.375 | 3/4-16 | 4.312 | 1.500 | 2.062 | 0.812 | 3.812 | 4.312 | 3.812 | 0.375 | 0.875 | 0.875 | 5.375 | 0.875 | 5.187 | 4.937 |
| 1-1/8 | 0.875 | 0.375 | 1-14   | 4.312 | 1.500 | 2.062 | 1.062 | 3.812 | 4.312 | 3.812 | 0.375 | 1.125 | 0.875 | 5.375 | 0.875 | 5.437 | 4.937 |

All dimensions are reference only unless specifically toleranced.



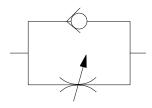
### **DIMENSIONS:** Series A3V, H3V Cylinders - 1-3/8" Bore



All standard rod ends have four wrench flats (two wrench flats with "I" option).

PORT POSITIONS: INDICATED BY CIRCLED NUMBERS
CUSHIONS: CYLINDER LENGTH IS NOT AFFECTED BY ADDITION OF CUSHIONS
SHOCK PADS: ADD 0.250 in TO (+ STROKE) DIMENSIONS OF EACH CYLINDER 1 AND CYLINDER 2 (ADD A TOTAL OF 0.500 in TO OVERALL LENGTH)






#### PORT CONTROL®

The exclusive PHD Port Control®, based on the "meter-out" principle, features an adjustable needle and a separate ball check. Both are built into the cylinder end cap and are used to control the speed of the cylinder over its entire stroke.

The self-locking needle has micrometer threads and is adjustable under pressure. It determines the orifice size which controls the exhaust volume. The separate ball check is closed while fluid

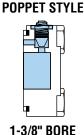
is exhausting from the cylinder, but opens to permit full flow of incoming fluids. The PHD Port Control® provides the optimum in speed control for small bore cylinders. It saves space and eliminates the cost of installation and fittings for external flow control valves.





#### **ADJUSTABLE CUSHION**

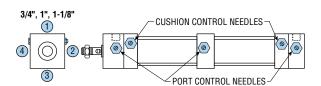
PHD Cushions are designed for smooth deceleration at the end of stroke. When the cushion is activated the remaining volume in the cylinder must exhaust past an adjustable needle which controls the amount of deceleration.


See dimension pages for dimensional information.

3/4", 1", 1-1/8" Series A3, A3V, H3V = Cushion Block 1-3/8" Series A3V, H3V = Poppet Style

Effective cushion length 1/2"

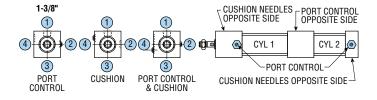
Not warranted on Series H3V 3/4", 1", 1-1/8" units


# CUSHION BLOCK PO 3/4", 1", 1-1/8" BORE 1



#### STANDARD PORT CONTROL® & CUSHION NEEDLE POSITIONS

(3/4", 1", 1-1/8" Bore Series A3, AV3, and HV3 Cylinders)

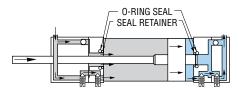

Port Control® and cushion needles are located in position 2 on standard cylinders. They may be located at position 4 when specified on all Series A3, A3V, and H3V. Consult PHD for special Port Control® or cushion needle positions.



### STANDARD PORT CONTROL® & CUSHION NEEDLE POSITIONS

(1-3/8" Bore Series A3V and H3V Cylinders)

Port Control® and cushion needles are located on opposite sides adjacent to port. Please consult distributor or PHD to check availability of special Port Control® or cushion needle positions.

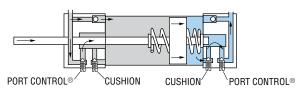



### PORT CONTROL® AND ADJUSTABLE CUSHION COMBINATION

(3/4", 1", 1-1/8" Bore Series A2, A3V, and H3V Cylinders)

Cushion and Port Control® combination arranged in series provides a compact efficient control system for maximum space weight and cost savings. The cushion is activated when the piston extension enters a seal in the cushion block. The remaining volume in the cylinder exhausts past an adjustable needle. A check seal in the adjusting needle is closed during deceleration, but opens to permit full flow for immediate reversing. The cushion seal in the block is an o-ring for air units.

#### **CUSHION BLOCK STYLE**




#### PORT CONTROL® AND ADJUSTABLE CUSHION COMBINATION

(1-3/8" Bore Series A3V and H3V Cylinders)

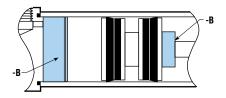
The cushion and Port Control® combination is also available on the 1-3/8" bore. This cushion is activated when a seal, which is traveling with the piston, seals against the cylinder end cap. This causes the remaining volume in the cylinder to exhaust past an adjustable needle which controls the amount of deceleration. The spring, which extends the seal from the piston, permits the seal to act as a check valve to allow full flow back into the cylinder for immediate reversing. The cushion seal for air units is made of urethane while seals for oil units are close tolerance metal.

#### **POPPET STYLE**





### **OPTIONS:** Series A3V, H3V, A3 Cylinders - 3/4", 1", 1-1/8", 1-3/8" Bore




#### **SHOCK PADS**

Polyurethane pads for absorption of shock and noise (not available on hydraulic units). Reducing shock permits higher piston velocities for shorter cycle times. Reducing noise levels provides improved environment for increased productivity. Eliminates metal to metal contact between piston and end caps.

#### Available together with all options EXCEPT:

• Same end as Cushion (-D)





# MAGNETIC PISTON FOR SERIES JC1 RADIAL SENSING SWITCHES

PHD Cylinders may be equipped with a magnetic band (specify -E) on the piston which activates externally mounted radial sensing switches. These switches allow the interfacing of the Tom Thumb® air or hydraulic cylinder to various logic systems. This option is for use with the following switches.

#### **SERIES JC1xDx MAGNETIC SWITCHES**

| PART NO. | DESCRIPTION                                 |
|----------|---------------------------------------------|
| JC1HDP-5 | PNP (Source), Radial Sensing, 5 meter cable |
| JC1HDP-K | PNP (Source), Radial Sensing, Quick Connect |
| JC1HDN-5 | NPN (Sink), Radial Sensing, 5 meter cable   |
| JC1HDN-K | NPN (Sink), Radial Sensing, Quick Connect   |

**NOTE:** Switches must be ordered separately.

#### **CORDSETS FOR SERIES JC1xDx SWITCHES**

| PART NO.    | DESCRIPTION                                          |
|-------------|------------------------------------------------------|
| 63549-02    | M8, 3 pin, Straight Female Connector, 2 meter cable  |
| 63549-05    | M8, 3 pin, Straight Female Connector, 5 meter cable  |
| 81284-1-010 | M12, 4 pin, Straight Female Connector, 2 meter cable |

**NOTE:** Cordsets are ordered separately.



# MAGNETIC PISTON FOR SERIES JC1 REED & TEACHABLE SWITCHES

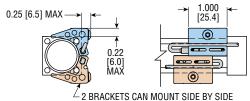
The PHD Magnetic Reed Switches may be used in situations where the radial sensing switches are not applicable. As with the radial sensing switches, a magnetic band (specify -M) on the piston activates the externally mounted PHD Reed Switches. The Reed Switches may be used to signal a programmable controller, sequencer, relay, or in some cases, a valve solenoid. This option is for use with the following switches.

The Teachable Switch provides the ability to identify two separately programmable positions with a single switch. Programmable capability means no "fine tuning." With switch properly aligned, just place actuator in desired positions and program. Solid-state sensing technology provides a highly reliable switch.

See Series JC1 Switches at phdinc.com for more information.

#### **SERIES JC1ST REED SWITCHES**

|                                        | PART NO. | DESCRIPTION                       |  |  |  |
|----------------------------------------|----------|-----------------------------------|--|--|--|
|                                        | JC1RDU-5 | PNP or NPN DC Reed, 5 meter cable |  |  |  |
| JC1RDU-K PNP or NPN DC Reed, Quick Cor |          |                                   |  |  |  |
| JC1ADU-K AC Reed, Quick Connect (M12)  |          |                                   |  |  |  |


**NOTE:** Switches must be ordered separately.

#### SERIES JC1ST TEACHABLE SWITCHES

| PART NO.                                                     | DESCRIPTION                                         |  |  |  |  |  |  |  |
|--------------------------------------------------------------|-----------------------------------------------------|--|--|--|--|--|--|--|
| JC1STP-2                                                     | PNP (Source), Solid State, 12-30 VDC, 2 meter cable |  |  |  |  |  |  |  |
| JC1STP-K PNP (Source), Solid State, 12-30 VDC, Quick Connect |                                                     |  |  |  |  |  |  |  |
| NOTE O 11 I I I I I I I I                                    |                                                     |  |  |  |  |  |  |  |

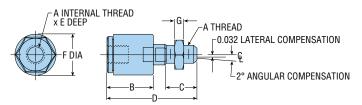
**NOTE:** Switches must be ordered separately.

#### **SWITCH BRACKET 92100**



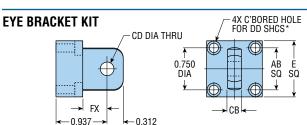


#### **FLUOROELASTOMER SEALS**


Fluoroelastomer seals are available to achieve seal compatibility with certain fluids. Seal compatibility should be checked with the fluid manufacturer for proper application. Consult PHD for high temperature use.

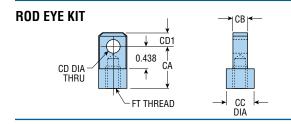


#### **SELF-ALIGNING PISTON ROD COUPLERS**


Rod Couplers eliminate expensive precision machining for mounting fixed or rigid cylinder on guide or slide applications.

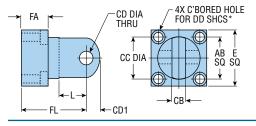
Cylinder efficiency is increased by eliminating friction caused by misalignment. Couplers compensate for 2° angular error and 1/32" lateral misalignment on push and pull stroke.




| MODEL |         | L     | ETTER | DIMEN | SION  |       |       |
|-------|---------|-------|-------|-------|-------|-------|-------|
| NO.   | A       | В     | B C D |       | E     | F     | G     |
| 250   | 1/4-28  | 1.000 | 0.625 | 1.875 | 0.500 | 0.875 | 0.156 |
| 312   | 5/16-24 | 1.000 | 0.625 | 1.875 | 0.500 | 0.875 | 0.187 |
| 375   | 3/8-24  | 1.000 | 0.625 | 1.875 | 0.500 | 0.875 | 0.219 |
| 437   | 7/16-20 | 1.125 | 0.650 | 2.187 | 0.500 | 1.000 | 0.250 |

To order, specify the model number.

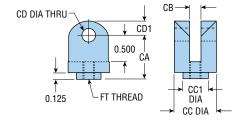



| BORE  | CYLINDER     | PART    |       | LETTER DIMENSION |       |     |       |       |  |
|-------|--------------|---------|-------|------------------|-------|-----|-------|-------|--|
| SIZE  | SERIES       | NO.     | AB    | CB               | CD    | DD* | E     | FX    |  |
| 3/4   | A3, A3V, H3V | 1077-01 | 0.750 | 0.248            | 0.250 | #6  | 1.000 | 0.577 |  |
| 1 &   | A3           | 1077-02 | 1.000 | 0.373            | 0.250 | #10 | 1.375 | 0.437 |  |
| 1-1/8 | A3V, H3V     | 1077-03 | 1.000 | 0.373            | 0.375 | #10 | 1.375 | 0.437 |  |

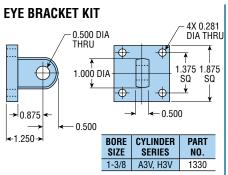
\*For 3/4 bore thru hole only.

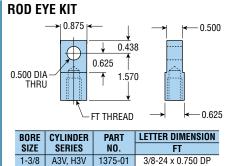


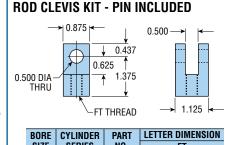
|   | BORE  | CYLINDER     | PART    |       |       | LE.   | TTER DI | MENSIO | N                  |
|---|-------|--------------|---------|-------|-------|-------|---------|--------|--------------------|
|   | SIZE  | SERIES       | NO.     | CA    | CB    | CC    | CD      | CD1    | FT                 |
|   | 3/4   | A3, A3V, H3V | 1075-01 | 0.750 | 0.248 | 0.500 | 0.250   | 0.250  | 1/4-28 x 0.375 DP  |
| ı | 4     | A3           | 1075-02 | 0.875 | 0.373 | 0.750 | 0.250   | 0.375  | 5/16-24 x 0.375 DP |
|   | 1     | A3V, H3V     | 1075-04 | 0.875 | 0.373 | 0.750 | 0.375   | 0.375  | 5/16-24 x 0.375 DP |
| ı | 1-1/8 | A3           | 1075-03 | 0.875 | 0.373 | 0.750 | 0.250   | 0.375  | 3/8-24 x 0.312 DP  |
|   | 1-1/0 | A3V, H3V     | 1075-05 | 0.875 | 0.373 | 0.750 | 0.375   | 0.375  | 3/8-24 x 0.312 DP  |


#### **CLEVIS BRACKET KIT - PIN INCLUDED**




| BORE  | CYLINDER     | PART  |       | LETTER DIMENSION |       |       |       |     |       |       |       |       |
|-------|--------------|-------|-------|------------------|-------|-------|-------|-----|-------|-------|-------|-------|
| SIZE  | SERIES       | NO.   | AB    | CB               | CC    | CD    | CD1   | DD* | E     | FA    | FL    | L     |
| 3/4   | A3, A3V, H3V | 12901 | 0.750 | 0.254            | 0.750 | 0.250 | 0.250 | #6  | 1.000 | 0.360 | 1.187 | 0.500 |
| 1 &   | A3           | 12902 | 1.000 | 0.379            | 0.875 | 0.250 | 0.375 | #10 | 1.375 | 0.500 | 1.250 | 0.531 |
| 1-1/8 | A3V, H3V     | 12903 | 1.000 | 0.379            | 0.875 | 0.375 | 0.375 | #10 | 1.375 | 0.500 | 1.250 | 0.531 |


For 3/4 bore thru hole only.


#### **ROD CLEVIS KIT - PIN INCLUDED**



| BOI | RE    | CYLINDER     | PART  |       |       |       | LETTER | DIMEN | SION  |                 |
|-----|-------|--------------|-------|-------|-------|-------|--------|-------|-------|-----------------|
| SIZ | ZE    | SERIES       | NO.   | CA    | CB    | CC    | CC1    | CD    | CD1   | FT              |
| 3/  | 4     | A3, A3V, H3V | 12904 | 0.812 | 0.254 | 0.750 | 0.437  | 0.250 | 0.250 | 1/4-28 TO SLOT  |
| -   |       | A3           | 12905 | 0.875 | 0.379 | 0.875 | 0.562  | 0.250 | 0.375 | 5/16-24 TO SLOT |
|     | - 1   | A3V, H3V     | 12906 | 0.875 | 0.379 | 0.875 | 0.562  | 0.375 | 0.375 | 5/16-24 TO SLOT |
|     | 1-1/8 | A3           | 12907 | 0.875 | 0.379 | 0.875 | 0.562  | 0.250 | 0.375 | 3/8-24 TO SLOT  |
| 1-1 |       | A3V, H3V     | 12908 | 0.875 | 0.379 | 0.875 | 0.562  | 0.375 | 0.375 | 3/8-24 TO SLOT  |





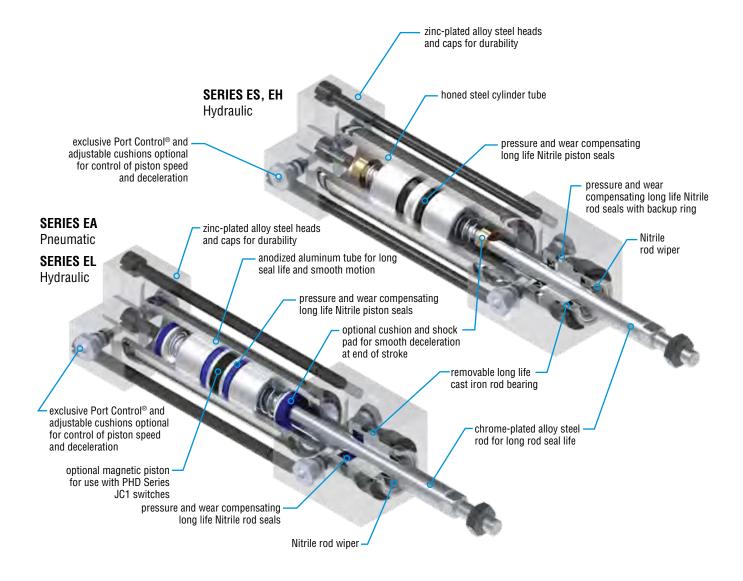


| BORE  | CYLINDER | PART  | LETTER DIMENSION |  |  |
|-------|----------|-------|------------------|--|--|
| SIZE  | SERIES   | NO.   | FT               |  |  |
| 1-3/8 | A3V, H3V | 12909 | 3/8-24 TO SLOT   |  |  |

All dimensions are reference only unless specifically toleranced.

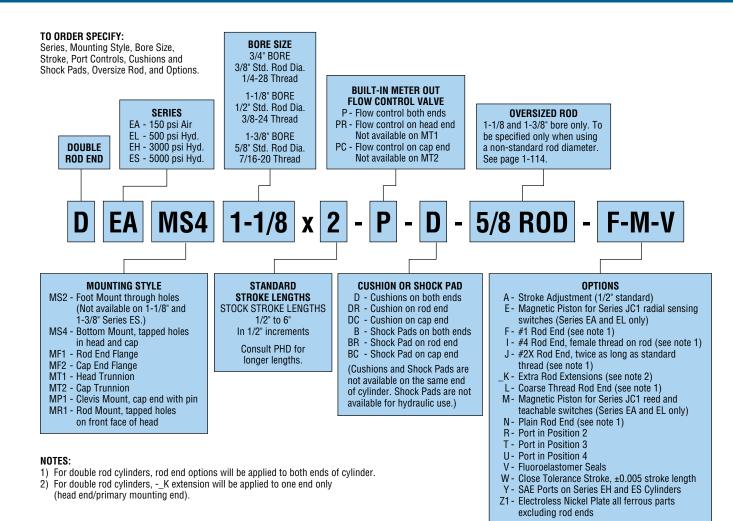


### **HEAVY DUTY CYLINDERS**


# EA, EL, EH, ES

# tom thumb®

#### **Major Benefits**


- Designed to provide long life and high performance in applications requiring a more rugged, higher pressurized cylinder.
- Standard bore sizes include 3/4", 1-1/8", and 1-3/8".
- Standard stroke lengths range from 1/2" to 6" in 1/2" increments.
- Can be specified with built-in flow controls, cushions, shock pads, stroke adjustment, and magnetic piston for axial sensing or reed switches.
- Wide range of options and sizes makes it fast and easy to select a cylinder to fit your application.
- The tie rod construction of the Tom Thumb® cylinders permit field repairing for extended life.







# ORDERING DATA: Series EA, EL, EH, ES Cylinders



Options may affect unit length. See dimensional pages and option information details.

#### SERIES JC1xDx MAGNETIC SWITCHES

| PART NO. | DESCRIPTION                                 |
|----------|---------------------------------------------|
| JC1RDU-5 | PNP or NPN DC Reed, 5 meter cable           |
| JC1RDU-K | PNP or NPN DC Reed, Quick Connect           |
| JC1ADU-K | AC Reed, Quick Connect (M12)                |
| JC1HDP-5 | PNP (Source), Radial Sensing, 5 meter cable |
| JC1HDP-K | PNP (Source), Radial Sensing, Quick Connect |
| JC1HDN-5 | NPN (Sink), Radial Sensing, 5 meter cable   |
| JC1HDN-K | NPN (Sink), Radial Sensing, Quick Connect   |

NOTE: Switches must be ordered separately.

#### **CORDSETS FOR SERIES JC1xDx SWITCHES**

| PART NO.    | DESCRIPTION                                          |  |  |  |  |  |
|-------------|------------------------------------------------------|--|--|--|--|--|
| 63549-02    | M8, 3 pin, Straight Female Connector, 2 meter cable  |  |  |  |  |  |
| 63549-05    | M8, 3 pin, Straight Female Connector, 5 meter cable  |  |  |  |  |  |
| 81284-1-010 | M12, 4 pin, Straight Female Connector, 2 meter cable |  |  |  |  |  |

NOTE: Cordsets are ordered separately.

### SERIES JC1ST TWO POSITION TEACHABLE MAGNETIC SWITCHES

| PART NO.                                          | DESCRIPTION                                         |  |  |  |  |  |  |
|---------------------------------------------------|-----------------------------------------------------|--|--|--|--|--|--|
| JC1STP-2                                          | PNP (Source), Solid State, 12-30 VDC, 2 meter cable |  |  |  |  |  |  |
| JC1STP-K                                          | PNP (Source), Solid State, 12-30 VDC, Quick Connect |  |  |  |  |  |  |
| <b>NOTE:</b> Switches must be ordered separately. |                                                     |  |  |  |  |  |  |

#### **CORDSET FOR SERIES JC1ST SWITCHES**

| PART NO.                              | DESCRIPTION                                         |  |  |  |  |  |
|---------------------------------------|-----------------------------------------------------|--|--|--|--|--|
| 81284-1-001                           | M8, 4 pin, Straight Female Connector, 5 meter cable |  |  |  |  |  |
| NOTE: Cardeate are ordered congretaly |                                                     |  |  |  |  |  |

**NOTE:** Cordsets are ordered separately.

#### **SWITCH MOUNTING BRACKET**

| PART NO.                    | DESCRIPTION                         |  |  |  |  |  |
|-----------------------------|-------------------------------------|--|--|--|--|--|
| 92101                       | Mounts Series JC1 Switch to Tie Rod |  |  |  |  |  |
| NOTE Devices and advanced a |                                     |  |  |  |  |  |

**NOTE:** Brackets are ordered separately.



# **ENGINEERING DATA:** Series EA, EL, EH, ES Cylinders

| SPECIFICATIONS   | SERIES EA                                                    | SERIES EL                      | SERIES EH                                                             | SERIES ES                    |  |  |  |  |
|------------------|--------------------------------------------------------------|--------------------------------|-----------------------------------------------------------------------|------------------------------|--|--|--|--|
| ROD SEALS        | Single block vee                                             | (2                             | 2) Block vee with back-up rir                                         | ng                           |  |  |  |  |
| PISTON SEALS     | (2) Blo                                                      | ock vee                        | (2) Block vee w                                                       | vith back-up ring            |  |  |  |  |
| TUBE SEALS       | 0-r                                                          | ring                           | O-ring with                                                           | back-up ring                 |  |  |  |  |
| ROD WIPER        |                                                              | Nitrile ro                     | od wiper                                                              |                              |  |  |  |  |
| PISTON ROD       | Hardchrome plated high strength steel 100,000 psi min. yield |                                |                                                                       |                              |  |  |  |  |
| ROD BUSHING      | Cast iron rod cartridge                                      |                                |                                                                       |                              |  |  |  |  |
| CYLINDER BARREL  | Hardcoated                                                   | d aluminum                     | Hone                                                                  | d steel                      |  |  |  |  |
| END CAPS         |                                                              | Zinc-pla                       | ted steel                                                             |                              |  |  |  |  |
| TIERODS          |                                                              | High tensile steel             |                                                                       | Heat treated stainless steel |  |  |  |  |
| PORTS            |                                                              | N                              | PT                                                                    |                              |  |  |  |  |
| LUBRICATION      |                                                              | Permanently lubrica            | ated for non-lube air                                                 |                              |  |  |  |  |
| WORKING PRESSURE | 150 psi air max.                                             | 500 psi hyd. max.              | 3000 psi hyd. max.                                                    | 5000 psi hyd. max.           |  |  |  |  |
| STANDARD STROKES | 1/2" 1                                                       | to 6" in 1/2" increments (long | 1/2" to 6" in 1/2" increments (longer strokes available, consult PHD) |                              |  |  |  |  |

| DIRECTION | FORCE (lb)/psi |             |             |  |  |  |
|-----------|----------------|-------------|-------------|--|--|--|
| DINECTION | 3/4" BORE      | 1-1/8" BORE | 1-3/8" BORE |  |  |  |
| PUSH      | 0.442          | 0.994       | 1.485       |  |  |  |
| PULL      | 0.332          | 0.798       | 1.178       |  |  |  |

#### **CYLINDER FORCE (TABLE 1)**

|         | OTEMBER FORDE (MDEE 1) |                 |                  |                                   |                                                       |                                     |  |  |  |  |
|---------|------------------------|-----------------|------------------|-----------------------------------|-------------------------------------------------------|-------------------------------------|--|--|--|--|
| SERIES  | CYLINDER<br>BORE       | ROD<br>DIAMETER | ROD<br>DIRECTION | EFFECTIVE<br>AREA FORCE<br>Ib/psi | AIR CONSUMPTION<br>at 80 psi<br>Cubic ft/in of Stroke | DISPLACEMENT<br>gal/in<br>OF STROKE |  |  |  |  |
|         | 3/4                    | 3/8             | Push             | 0.442                             | 0.0016                                                | 0.0019                              |  |  |  |  |
|         | 3/4                    | 3/8             | Pull             | 0.332                             | 0.0012                                                | 0.0015                              |  |  |  |  |
|         | 1-1/8                  | 1/2             | Push             | 0.994                             | 0.0037                                                | 0.0043                              |  |  |  |  |
|         |                        |                 | Pull             | 0.798                             | 0.0030                                                | 0.0034                              |  |  |  |  |
| EA, EL, | 1-1/8                  | 5/8             | Push             | 0.994                             | 0.0037                                                | 0.0043                              |  |  |  |  |
| EH, ES  |                        |                 | Pull             | 0.687                             | 0.0026                                                | 0.0030                              |  |  |  |  |
|         | 1-3/8                  | 5/8             | Push             | 1.485                             | 0.0055                                                | 0.0065                              |  |  |  |  |
|         | 1-3/0                  |                 | Pull             | 1.178                             | 0.0044                                                | 0.0051                              |  |  |  |  |
|         | 1-3/8                  | 2/4             | Push             | 1.485                             | 0.0055                                                | 0.0065                              |  |  |  |  |
|         | 1-3/0                  | 3/4             | Pull             | 1.043                             | 0.039                                                 | 0.0045                              |  |  |  |  |

**NOTE:** Use the Pull figures for calculating double rod cylinder forces in both directions.

| SERIES | CYLINDER | Ul          | NIT WEIGHTS (Ib)         |
|--------|----------|-------------|--------------------------|
| SENIES | BORE     | ZERO STROKE | ADDER PER INCH OF STROKE |
|        | 3/4      | 1.42        | 0.96                     |
| EAMR1  | 1-1/8    | 2.70        | 0.15                     |
|        | 1-3/8    | 5.05        | 0.22                     |

### MAXIMUM ALLOWABLE PUSH FORCE (TABLE 2)

| SERIES         | ROD      |      |     | CY  | LINDER | FORCE ( | lb)  |      |      |
|----------------|----------|------|-----|-----|--------|---------|------|------|------|
| SLITILO        | DIAMETER | 100  | 200 | 500 | 1000   | 1500    | 2000 | 3000 | 5000 |
|                | 3/8      | 27"  | 19" | 12" | 8"     | 7"      | 6"   | 5"   | 4"   |
| 1-3/8" AV, HV  | 1/2      | 48"  | 34" | 21" | 15"    | 12"     | 11"  | 9"   | 7"   |
| EA, EL, EH, ES | 5/8      | 74"  | 53" | 33" | 24"    | 19"     | 17"  | 14"  | 11"  |
|                | 3/4      | 107" | 76" | 48" | 34"    | 28"     | 24"  | 20"  | 15"  |



### ENGINEERING DATA: Series EA, EL, EH, ES Cylinders

#### **LUBRICATION - HYDRAULIC FLUIDS**

All air units are permanently lubricated at the factory and can be used for non-lubricated air service. Static and dynamic seals are compatible with standard petroleum-based oil used for lubrication of air cylinders or as a power source for hydraulic cylinders. For service with other lubricants or hydraulic media, please specify to insure proper seals are supplied.

#### **TEMPERATURE LIMITS - SEALS**

All series have Nitrile seals and rod wipers for general use between -20° and +180°F. Consult PHD for higher temperatures.

#### **HOW TO DETERMINE BORE AND PISTON SIZE**

- 1. Determine stroke and force required.
- 2. Calculate the force (lb) produced by using the effective area figures in Table 1 on page 128 and multiplying them times the operating pressure (psi).
- Check Table 2 on page 128 to verify that rod size is sufficient for force. If stroke required is greater than length listed in Table 2, increase rod diameter or go to larger bore size.

**NOTE:** Table 2 shows maximum stroke lengths for mounting styles MS2, MS4, MR1, MF1, MF2 fastened to rigid base.

For mounting style MP1; divide table value by 2.

For mounting styles MT1, and MT2; divide table value by 1.75.

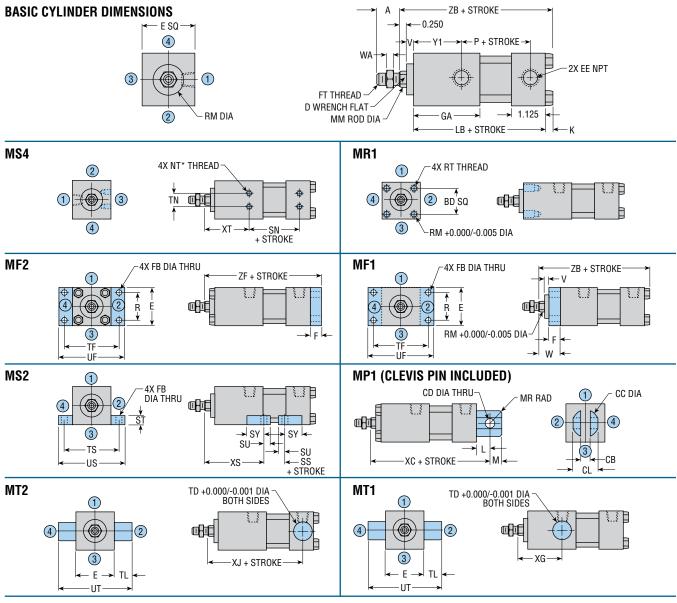
To avoid excessive wear on rod bushings and seals, it is recommended that cylinders with strokes exceeding the following lengths be equipped with 1" long stop tubes or stopped externally 1" short of full push stroke.

3/4" Bore x 8" 1-1/8" Bore x 12" 1-3/8" Bore x 18"

#### **BREAKAWAY**

The breakaway pressure for all pneumatic cylinders is 20 psi at zero load. The breakaway pressure for all hydraulic cylinders is 40 psi at zero load.

#### **MAXIMUM WORKING PRESSURES**


| SERIES | AIR MAX. |          | HYDRAULIC            |
|--------|----------|----------|----------------------|
| SENIES | psi      | MAX. psi | WITH -E OR -M OPTION |
| EA     | 150      | _        | _                    |
| EL     | _        | 500      | 500                  |
| EH     | _        | 3000     | _                    |
| ES     | _        | 5000     | _                    |

#### STROKE TOLERANCE

Tolerance on the nominal stroke length is ±0.032 for all cylinders.



# **DIMENSIONS:** Series EA, EL, EH, ES Cylinders



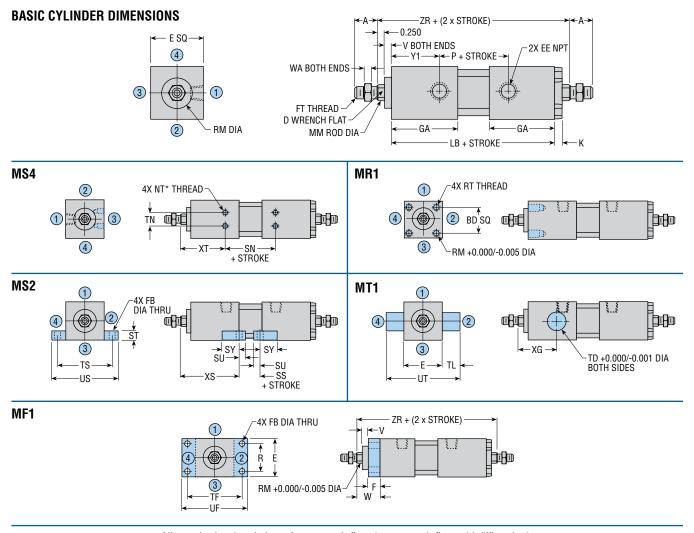
All standard rod ends have four wrench flats (two wrench flats with "I" option).

| <b>BORE</b> |       |       |       |       |       |       |       |       |     |       |       | LETTER  | DIMEN | SION  |       |       |       |       |       |                   |       |       |       |
|-------------|-------|-------|-------|-------|-------|-------|-------|-------|-----|-------|-------|---------|-------|-------|-------|-------|-------|-------|-------|-------------------|-------|-------|-------|
| SIZE        | Α     | BD    | CB    | CC    | CD    | CL    | D     | E     | EE  | F     | FB    | FT      | GA    | K     | L     | LB    | M     | MM    | MR    | NT*               | P     | R     | RM    |
| 3/4         | 0.750 | 1.000 | 0.375 | 1.000 | 0.375 | 0.875 | 0.312 | 1.375 | 1/4 | 0.312 | 0.219 | 1/4-28  | 1.812 | 0.00  | 0.500 | 4.000 | 0.375 | 0.375 | 0.570 | 10-32 x 0.25 DP   | 2.188 | 0.938 | 0.750 |
| 1-1/8       | 0.750 | 1.250 | 0.500 | 1.250 | 0.500 | 1.125 | 0.438 | 1.750 | 1/4 | 0.500 | 0.281 | 3/8-24  | 2.188 | 0.250 | 0.625 | 4.375 | 0.500 | 0.500 | 0.720 | 1/4-28 x 0.31 DP  | 2.312 | 1.250 | 1.000 |
| 1-3/8       | 0.750 | 1.625 | 0.625 | 1.750 | 0.625 | 1.500 | 0.562 | 2.250 | 3/8 | 0.500 | 0.344 | 7/16-20 | 2.625 | 0.312 | 0.750 | 4.812 | 0.625 | 0.625 | 0.910 | 5/16-24 x 0.50 DP | 2.438 | 1.625 | 1.250 |

| <b>BORE</b> |                   |       |       |       |       |       |       |       |       |       | LETTER DIMENSION |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
|-------------|-------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| SIZE        | RT                | SN    | SS    | ST    | SU    | SY    | TD    | TF    | TL    | TN    | TS               | UF    | US    | UT    | V     | W     | WA    | XC    | XG    | XJ    | XS    | XT    | Y1    | ZB    | ZF    |
| 3/4         | 10-32 x 0.25 DP   | 2.188 | 1.062 | 0.281 | 0.250 | 0.500 | 0.500 | 1.938 | 0.500 | 0.562 | 1.938            | 2.375 | 2.375 | 2.375 | 0.125 | 0.688 | 0.156 | 4.875 | 1.625 | 3.812 | 2.188 | 1.625 | 1.250 | 4.375 | 4.688 |
| 1-1/8       | 1/4-28 x 0.50 DP  | 2.312 | 0.938 | 0.344 | 0.312 | 0.812 | 0.750 | 2.500 | 0.750 | 0.625 | 2.500            | 3.000 | 3.000 | 3.250 | 0.250 | 1.000 | 0.219 | 5.500 | 2.062 | 4.375 | 2.750 | 2.062 | 1.562 | 5.125 | 5.375 |
| 1-3/8       | 5/16-24 x 0.62 DP | 2.438 | 0.938 | 0.469 | 0.438 | 1.062 | 0.875 | 3.000 | 0.875 | 0.875 | 3.000            | 3.750 | 3.750 | 4.000 | 0.250 | 1.000 | 0.250 | 6.062 | 2.438 | 4.875 | 3.188 | 2.438 | 1.938 | 5.625 | 5.812 |

PORT POSITIONS: INDICATED BY CIRCLED NUMBERS.

CUSHIONS: CYLINDER LENGTH IS NOT AFFECTED BY ADDITION OF CUSHIONS. MT1 (-DR) & MT2 (-DC) CUSHION NEEDLES ARE IN POSITION 3.


SHOCK PADS: CYLINDER LENGTH IS NOT AFFECTED BY ADDITION OF SHOCK PADS

MS2 MTG. STYLE: NOT AVAILABLE ON 1-1/8" & 1-3/8" SERIES ES CYLINDERS

\*MS4 MTG. STYLE: UNITS WITH OPTION -R OR -U WITH/-P. THE NT THREAD SIZE AND DEPTH WILL BE REDUCED AS FOLLOWS: 3/4" BORE NOT AVAILABLE WITH -R OR -U WITH/-P. 1-1/8" BORE NT=10-32 x 0.19, 1-3/8" BORE NT=1/4-28 x 0.25



# **DIMENSIONS:** Series DEA, DEL, DEH, DES Double Rod End Cylinders



All standard rod ends have four wrench flats (two wrench flats with "I" option).

| BORE  |       | LETTER DIMENSION |       |       |     |       |       |         |       |       |       |       |                   |       |       |       |                   |
|-------|-------|------------------|-------|-------|-----|-------|-------|---------|-------|-------|-------|-------|-------------------|-------|-------|-------|-------------------|
| SIZE  | Α     | BD               | D     | E     | EE  | F     | FB    | FT      | GA    | K     | LB    | MM    | NT*               | P     | R     | RM    | RT                |
| 3/4   | 0.750 | 1.000            | 0.312 | 1.375 | 1/4 | 0.312 | 0.219 | 1/4-28  | 1.812 | 0.00  | 4.687 | 0.375 | 10-32 x 0.25 DP   | 2.188 | 0.938 | 0.750 | 10-32 x 0.25 DP   |
| 1-1/8 | 0.750 | 1.250            | 0.438 | 1.750 | 1/4 | 0.500 | 0.281 | 3/8-24  | 2.188 | 0.250 | 5.437 | 0.500 | 1/4-28 x 0.31 DP  | 2.312 | 1.250 | 1.000 | 1/4-28 x 0.50 DP  |
| 1-3/8 | 0.750 | 1.625            | 0.562 | 2.250 | 3/8 | 0.500 | 0.344 | 7/16-20 | 2.625 | 0.312 | 6.312 | 0.625 | 5/16-24 x 0.50 DP | 2.438 | 1.625 | 1.250 | 5/16-24 x 0.62 DP |

| BORE  |       |       |       |       |       |       |       |       |       | LETTE | R DIME | NSION |       |       |       |       |       |       |       |       |       |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| SIZE  | SN    | SS    | ST    | SU    | SY    | TD    | TF    | TL    | TN    | TS    | UF     | US    | UT    | V     | W     | WA    | XG    | XS    | XT    | Y1    | ZR    |
| 3/4   | 2.188 | 1.062 | 0.281 | 0.250 | 0.500 | 0.500 | 1.938 | 0.500 | 0.562 | 1.938 | 2.375  | 2.375 | 2.375 | 0.125 | 0.688 | 0.156 | 1.625 | 2.188 | 1.625 | 1.250 | 5.438 |
| 1-1/8 | 2.312 | 0.938 | 0.344 | 0.312 | 0.812 | 0.750 | 2.500 | 0.750 | 0.625 | 2.500 | 3.000  | 3.000 | 3.250 | 0.250 | 1.000 | 0.219 | 2.062 | 2.750 | 2.062 | 1.562 | 6.438 |
| 1-3/8 | 2.438 | 0.938 | 0.469 | 0.438 | 1.062 | 0.875 | 3.000 | 0.875 | 0.875 | 3.000 | 3.750  | 3.750 | 4.000 | 0.250 | 1.000 | 0.250 | 2.438 | 3.188 | 2.438 | 1.938 | 7.312 |

PORT POSITIONS: INDICATED BY CIRCLED NUMBERS.

CUSHIONS: CYLINDER LENGTH IS NOT AFFECTED BY ADDITION OF CUSHIONS. MT1 (-DR) CUSHION NEEDLES ARE IN POSITION 3.

**SHOCK PADS**: CYLINDER LENGTH IS NOT AFFECTED BY ADDITION OF SHOCK PADS

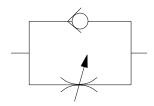
MS2 MTG. STYLE: NOT AVAILABLE ON 1-1/8" & 1-3/8" SERIES ES CYLINDERS

\*MS4 MTG. STYLE: UNITS WITH OPTION -R OR -U WITH/-P. THE NT THREAD SIZE AND DEPTH WILL BE REDUCED AS FOLLOWS: 3/4" BORE NOT AVAILABLE WITH -R OR -U WITH/-P. 1-1/8" BORE NT=10-32 x 0.19, 1-3/8" BORE NT=1/4-28 x 0.25

All dimensions are reference only unless specifically toleranced.

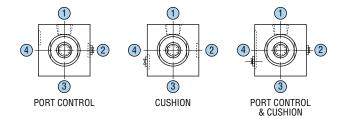


### **OPTIONS:** Series EA, EL, EH, ES Cylinders




# PORT CONTROL® Not available with -Y SAE ports option

The exclusive PHD Port Control®, based on the "meter-out" principle, features an adjustable needle and a separate ball check. Both are built into the cylinder end cap and are used to control the speed of the cylinder over its entire stroke.


The self-locking needle has micrometer threads and is adjustable under pressure. It determines the orifice size which controls the exhaust volume. The separate ball check is closed while fluid

is exhausting from the cylinder, but opens to permit full flow of incoming fluids. The PHD Port Control® provides the optimum in speed control for small bore cylinders. It saves space and eliminates the cost of installation and fittings for external flow control valves.

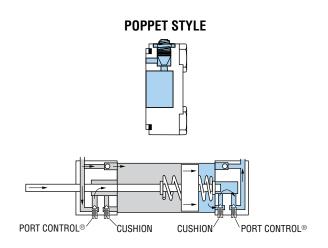


# STANDARD PORT CONTROL AND CUSHION NEEDLE POSITIONS

Port Control® and cushion needles are located on opposite sides adjacent to port. Please consult distributor or PHD to check availability of special Port Control® or cushion needle positions.






#### ADJUSTABLE CUSHION

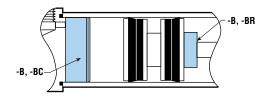
PHD Cushions are designed for smooth deceleration at the end of stroke. When the cushion is activated the remaining volume in the cylinder must exhaust past an adjustable needle which controls the amount of deceleration.

See dimension pages for dimensional information. Series E = Poppet Style

# PORT CONTROL AND ADJUSTABLE CUSHION COMBINATION

The cushion and Port Control® combination is also available. This cushion is activated when a seal, which is traveling with the piston, seals against the cylinder end cap. This causes the remaining volume in the cylinder to exhaust past an adjustable needle which controls the amount of deceleration. The spring, which extends the seal from the piston, permits the seal to act as a check valve to allow full flow back into the cylinder for immediate reversing. The cushion seal for air units is made of urethane while seals for oil units are close tolerance metal.






#### **SHOCK PADS**

Polyurethane pads for absorption of shock and noise (not available on hydraulic units). Reducing shock permits higher piston velocities for shorter cycle times. Reducing noise levels provides improved environment for increased productivity. Eliminates metal to metal contact between piston and end caps.

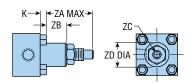
#### Available together with all options EXCEPT:

- Same end as Cushion
- · Same end as Stroke Adjustment





### **OPTIONS:** Series EA, EL, EH, ES Cylinders




#### CYLINDER STROKE ADJUSTMENT

Stroke adjustment screws are available to decrease the retraction stroke. The standard adjusting range is 1/2 inch. Longer adjusting lengths are available on request.

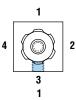
#### Available with all options EXCEPT:

- Cushion on the cap end
- · Shock pad on the cap end
- Pivot Mount



| BC | RE  |       | LETT  | ER DIM | ENSION  |       |
|----|-----|-------|-------|--------|---------|-------|
| S  | IZE | K     | ZA    | ZB     | ZC      | ZD    |
| 3  |     |       |       |        | 1/8 HEX |       |
| 1- |     |       |       |        | 1/4 HEX |       |
| 1- | 3/8 | 0.312 | 2.125 | 0.812  | 1/4 HEX | 1.250 |

#### PORT POSITIONS


Port position 1 is standard on all cylinders.

#### PORT POSITION 1 (STANDARD)





#### **PORT POSITION 3**





**PORT POSITION 2** 





**PORT POSITION 4** 





SAE PORTS FOR SERIES EH AND ES 3/4", 1-1/8", 1-3/8" Bore

SAE Ports are available on Series EH and ES Hydraulic Cylinders. Port locations are the same as the NPT ports. Port sizes are shown to right.

| BORE SIZE | 3/4"      | 1-1/8"    | 1-3/8"    |
|-----------|-----------|-----------|-----------|
| SAE PORT  | 7/16 - 20 | 7/16 - 20 | 9/16 - 18 |



# MAGNETIC PISTON FOR SERIES JC1 RADIAL SENSING SWITCHES

PHD Cylinders may be equipped with a magnetic band (specify -E) on the piston which activates externally mounted radial sensing switches. These switches allow the interfacing of the Tom Thumb® air or hydraulic cylinder to various logic systems. This option is for use with the following switches.

See Series JC1 Switches at phdinc.com for more information.

# SERIES JC1xDx MAGNETIC SWITCHES

| OLITIE   | OUTABA MAGNETTO OWITOTIES                   |
|----------|---------------------------------------------|
| PART NO. | DESCRIPTION                                 |
| JC1HDP-5 | PNP (Source), Radial Sensing, 5 meter cable |
| JC1HDP-K | PNP (Source), Radial Sensing, Quick Connect |
| JC1HDN-5 | NPN (Sink), Radial Sensing, 5 meter cable   |
| JC1HDN-K | NPN (Sink), Radial Sensing, Quick Connect   |

NOTE: Switches must be ordered separately.

#### **CORDSETS FOR SERIES JC1xDx SWITCHES**

| PART NO.    | DESCRIPTION                                          |
|-------------|------------------------------------------------------|
| 63549-02    | M8, 3 pin, Straight Female Connector, 2 meter cable  |
| 63549-05    | M8, 3 pin, Straight Female Connector, 5 meter cable  |
| 81284-1-010 | M12, 4 pin, Straight Female Connector, 2 meter cable |

NOTE: Cordsets are ordered separately.

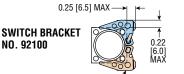
# M

# MAGNETIC PISTON FOR SERIES JC1 REED & TEACHABLE SWITCHES

The PHD Magnetic Reed Switches may be used in situations where the radial sensing switches are not applicable. As with the radial sensing switches, a magnetic band (specify -M) on the piston activates the externally mounted PHD Reed Switches. The Reed Switches may be used to signal a programmable controller, sequencer, relay, or in some cases, a valve solenoid. This option is for use with the following switches.

The Teachable Switch provides the ability to identify two separately programmable positions with a single switch. Programmable capability means no "fine tuning." With switch properly aligned, just place actuator in desired positions and program. Solid-state sensing technology provides a highly reliable switch.

#### **SERIES JC1ST REED SWITCHES**


| PART NO. | DESCRIPTION                       |
|----------|-----------------------------------|
| JC1RDU-5 | PNP or NPN DC Reed, 5 meter cable |
| JC1RDU-K | PNP or NPN DC Reed, Quick Connect |
| JC1ADU-K | AC Reed, Quick Connect (M12)      |

NOTE: Switches must be ordered separately.

#### **SERIES JC1ST TEACHABLE SWITCHES**

| PART NO. | DESCRIPTION                                         |
|----------|-----------------------------------------------------|
| JC1STP-2 | PNP (Source), Solid State, 12-30 VDC, 2 meter cable |
| JC1STP-K | PNP (Source), Solid State, 12-30 VDC, Quick Connect |

NOTE: Switches must be ordered separately.





All dimensions are reference only unless specifically toleranced.

 ${\it extstyle 2}$  2 brackets can mount side by side



# **OPTIONS:** Series EA, EL, EH, ES Cylinders



#### FLUOROELASTOMER SEALS

Fluoroelastomer seals are available to achieve seal compatibility with certain fluids. Seal compatibility should be checked with the fluid manufacturer for proper application. Consult PHD for high temperature use.



#### **ELECTROLESS NICKEL PLATING**

Electroless nickel plating is done on all externally exposed ferrous parts except rods and rod end, or parts made of stainless steel or aluminum. This optional plating treatment gives an alternative method of protecting the cylinder from severe environments.

**NOTE:** Standard plating is Brite Zinc.

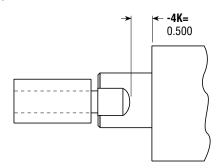


#### **CLOSE TOLERANCE STROKE**

This option may be specified when a precise stroke length is required and stroke adjustment is not acceptable. By specifying this option, a stroke length with a tolerance of  $\pm 0.005$  will be supplied. Standard stroke tolerance is  $\pm 0.032$ .

Maximum stroke for cylinders with close tolerance is 18".

**NOTE:** This option is not available with shock pads (-B).




#### EXTRA ROD EXTENSION

This option may be specified when extra plain rod extension between rod flats and cylinder snout is desired. Length is specified in 1/8" increments.

Length code example:

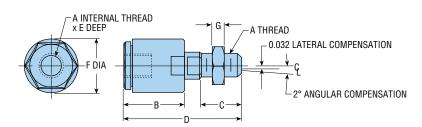
- -4K = 1/2 of extra rod extension
- -8K = 1, etc.



# **ACCESSORIES:** Series EA, EL, EH, ES Cylinders

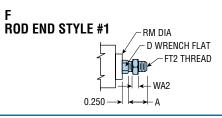
#### **SELF-ALIGNING PISTON ROD COUPLERS**

Rod Couplers eliminate expensive precision machining for mounting fixed or rigid cylinder on guide or slide applications.

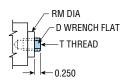

Cylinder efficiency is increased by eliminating friction caused by misalignment. Couplers compensate for 2° angular error and 1/32" lateral misalignment on push and pull stroke. (Miniature Couplers compensate for 1° of angular error.)

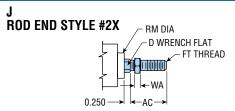
Couplers provide greater reliability and reduce cylinder and component wear, simplifying alignment problems in the field.

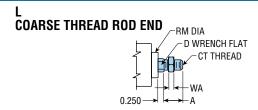
Rod Couplers are manufactured from high tensile and hardened steel components.


To order, specify the model number.

| MODEL |         | LETTER DIMENSION |       |       |       |       |       |  |  |  |  |  |  |
|-------|---------|------------------|-------|-------|-------|-------|-------|--|--|--|--|--|--|
| NO.   | A       | В                | C     | D     | E     | F     | G     |  |  |  |  |  |  |
| 250   | 1/4-28  | 1.000            | 0.625 | 1.875 | 0.500 | 0.875 | 0.156 |  |  |  |  |  |  |
| 312   | 5/16-24 | 1.000            | 0.625 | 1.875 | 0.500 | 0.875 | 0.187 |  |  |  |  |  |  |
| 375   | 3/8-24  | 1.000            | 0.625 | 1.875 | 0.500 | 0.875 | 0.219 |  |  |  |  |  |  |
| 437   | 7/16-20 | 1.125            | 0.750 | 2.187 | 0.500 | 1.000 | 0.250 |  |  |  |  |  |  |
| 500   | 1/2-20  | 1.125            | 0.750 | 2.187 | 0.500 | 1.000 | 0.312 |  |  |  |  |  |  |
| 625   | 5/8-18  | 1.750            | 1.125 | 3.312 | 0.812 | 1.562 | 0.375 |  |  |  |  |  |  |
| 750   | 3/4-16  | 1.750            | 1.125 | 3.312 | 0.812 | 1.562 | 0.421 |  |  |  |  |  |  |



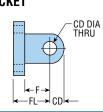


# ACCESSORIES: Series EA, EL, EH, ES Cylinders

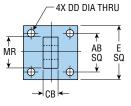


### ROD END STYLE #4



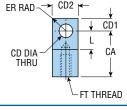


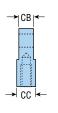




#### **CLEVIS BRACKET - PIN INCLUDED**

| BORE  | ROD TYPE | ROD      |       | LETTER DIMENSION |         |       |         |         |       |                    |       |       |  |  |
|-------|----------|----------|-------|------------------|---------|-------|---------|---------|-------|--------------------|-------|-------|--|--|
| SIZE  | NOD ITE  | DIAMETER | Α     | AC               | CT      | D     | FT      | FT2     | RM    | T                  | WA    | WA2   |  |  |
| 3/4   | STANDARD | 0.375    | 0.750 | 1.500            | 1/4-20  | 0.312 | 1/4-28  | 5/16-24 | 0.750 | 1/4-28 x 0.625 DP  | 0.156 | 0.187 |  |  |
| 1-1/8 | STANDARD | 0.500    | 0.750 | 1.500            | 3/8-16  | 0.438 | 3/8-24  | 7/16-20 | 1.000 | 3/8-24 x 0.625 DP  | 0.219 | 0.250 |  |  |
| 1-1/0 | OVERSIZE | 0.625    | 0.750 | 1.500            | 7/16-14 | 0.562 | 7/16-20 | 1/2-20  | 1.000 | 7/16-20 x 0.625 DP | 0.250 | 0.312 |  |  |
| 1-3/8 | STANDARD | 0.625    | 0.750 | 1.500            | 7/16-14 | 0.562 | 7/16-20 | 1/2-20  | 1.250 | 7/16-20 x 0.625 DP | 0.250 | 0.312 |  |  |
| 1-3/0 | OVERSIZE | 0.750    | 1.000 | 2.000            | 9/16-12 | 0.688 | 9/16-18 | 5/8-18  | 1.250 | 9/16-18 x 0.625 DP | 0.312 | 0.375 |  |  |

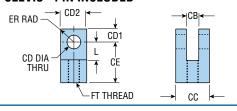
All standard rod ends have four wrench flats (except -I rod end style).


# E SERIES MOUNTING ATTACHMENTS EYE BRACKET





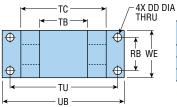

| BORE  | PART    | LETTER DIMENSION |       |       |       |       |       |       |       |  |  |  |  |
|-------|---------|------------------|-------|-------|-------|-------|-------|-------|-------|--|--|--|--|
| SIZE  | NO.     | AB               | CB    | CD    | DD    | E     | F     | FL    | MR    |  |  |  |  |
| 3/4   | 2412-01 | 1.000            | 0.375 | 0.375 | 0.219 | 1.375 | 0.812 | 1.125 | 0.750 |  |  |  |  |
| 1-1/8 | 1330    | 1.375            | 0.500 | 0.500 | 0.281 | 1.875 | 0.875 | 1.250 | 1.000 |  |  |  |  |
| 1-3/8 | 2412-02 | 1.625            | 0.625 | 0.625 | 0.344 | 2.250 | 1.062 | 1.562 | 1.250 |  |  |  |  |


#### **ROD EYE**





| BORE  | PART    | T LETTER DIMENSION |       |       |       |       |       |       |                   |       |  |
|-------|---------|--------------------|-------|-------|-------|-------|-------|-------|-------------------|-------|--|
| SIZE  | NO.     | CA                 | CB    | CC    | CD    | CD1   | CD2   | ER    | FT                | L     |  |
| 3/4   | 2414-01 | 1.500              | 0.375 | 0.500 | 0.375 | 0.375 | 0.750 | 0.531 | 1/4-28 x 0.75 DP  | 0.562 |  |
| 1-1/8 | 1375-01 | 1.562              | 0.500 | 0.625 | 0.500 | 0.438 | 0.875 | 0.625 | 3/8-24 x 0.75 DP  | 0.625 |  |
| 1-3/8 | 2414-02 | 2.000              | 0.625 | 0.750 | 0.625 | 0.625 | 1.250 | 0.906 | 7/16-20 x 1.00 DP | 0.812 |  |
| 1-3/0 | 2414-03 | 2.000              | 0.625 | 0.750 | 0.625 | 0.625 | 1.250 | 0.906 | 9/16-18 x 1.00 DP | 0.812 |  |


#### **ROD CLEVIS - PIN INCLUDED**



| BORE  | PART  | PART LETTER DIMENSION |       |       |       |       |       |       |         |       |
|-------|-------|-----------------------|-------|-------|-------|-------|-------|-------|---------|-------|
| SIZE  | NO.   | CB                    | CC    | CD    | CD1   | CD2   | CE    | ER    | FT      | L     |
| 3/4   | 12912 | 0.375                 | 0.875 | 0.375 | 0.375 | 0.750 | 1.312 | 0.531 | 1/4-28  | 0.562 |
| 1-1/8 | 12909 | 0.500                 | 1.125 | 0.500 | 0.438 | 0.875 | 1.375 | 0.625 | 3/8-24  | 0.625 |
| 1-3/8 | 12914 | 0.625                 | 1.375 | 0.625 | 0.625 | 1.250 | 1.812 | 0.906 | 7/16-20 | 0.812 |
| 1-3/8 | 12915 | 0.625                 | 1.375 | 0.625 | 0.625 | 1.250 | 1.812 | 0.906 | 9/16-18 | 0.812 |
|       | 12313 | 0.023                 | 1.070 | 0.023 | 0.023 | 1.230 | 1.012 | 0.300 | 3/10-10 | 0.012 |

#### TRUNNION BRACKET





| BORE  | PART    |       | LETTER DIMENSION |       |       |       |       |       |       |       |       |  |  |
|-------|---------|-------|------------------|-------|-------|-------|-------|-------|-------|-------|-------|--|--|
| SIZE  | NO.     | DD    | F                | LT    | RB    | TB    | TC    | TD    | TU    | UB    | WE    |  |  |
| 3/4   | 2415-01 | 0.281 | 1.750            | 2.250 | 1.000 | 1.375 | 2.375 | 0.500 | 3.125 | 3.625 | 1.500 |  |  |
| 1-1/8 | 2415-02 | 0.281 | 2.000            | 2.500 | 1.250 | 1.750 | 3.250 | 0.750 | 4.000 | 4.500 | 1.750 |  |  |
| 1-3/8 | 2415-03 | 0.344 | 2.625            | 3.125 | 1.375 | 2.250 | 4.000 | 0.875 | 4.875 | 5.500 | 2.000 |  |  |

All dimensions are reference only unless specifically toleranced.



